VTK
9.1.0
|
create 2D Voronoi convex tiling of input points More...
#include <vtkVoronoi2D.h>
Public Types | |
enum | GenerateScalarsStrategy { NONE = 0 , POINT_IDS = 1 , THREAD_IDS = 2 } |
enum | ProjectionPlaneStrategy { XY_PLANE = 0 , SPECIFIED_TRANSFORM_PLANE = 1 , BEST_FITTING_PLANE = 2 } |
![]() | |
typedef vtkAlgorithm | Superclass |
![]() | |
enum | DesiredOutputPrecision { SINGLE_PRECISION , DOUBLE_PRECISION , DEFAULT_PRECISION } |
Values used for setting the desired output precision for various algorithms. More... | |
typedef vtkObject | Superclass |
Public Member Functions | |
int | GetNumberOfThreadsUsed () |
Return the number of threads actually used during execution. More... | |
vtkMTimeType | GetMTime () override |
Get the MTime of this object also considering the locator. More... | |
virtual void | SetPadding (double) |
Specify a padding for the bounding box of the points. More... | |
virtual double | GetPadding () |
Specify a padding for the bounding box of the points. More... | |
virtual void | SetGenerateScalars (int) |
Indicate whether to create a scalar array as part of the output. More... | |
virtual int | GetGenerateScalars () |
Indicate whether to create a scalar array as part of the output. More... | |
void | SetGenerateScalarsToNone () |
Indicate whether to create a scalar array as part of the output. More... | |
void | SetGenerateScalarsToPointIds () |
Indicate whether to create a scalar array as part of the output. More... | |
void | SetGenerateScalarsToThreadIds () |
Indicate whether to create a scalar array as part of the output. More... | |
virtual void | SetTransform (vtkAbstractTransform *) |
Set / get the transform which is applied to points to generate a 2D problem. More... | |
virtual vtkAbstractTransform * | GetTransform () |
Set / get the transform which is applied to points to generate a 2D problem. More... | |
virtual void | SetProjectionPlaneMode (int) |
Define the method to project the input 3D points into a 2D plane for tessellation. More... | |
virtual int | GetProjectionPlaneMode () |
Define the method to project the input 3D points into a 2D plane for tessellation. More... | |
void | SetProjectionPlaneModeToXYPlane () |
Define the method to project the input 3D points into a 2D plane for tessellation. More... | |
void | SetProjectionPlaneModeToSpecifiedTransformPlane () |
Define the method to project the input 3D points into a 2D plane for tessellation. More... | |
void | SetProjectionPlaneModeToBestFittingPlane () |
Define the method to project the input 3D points into a 2D plane for tessellation. More... | |
virtual void | SetPointOfInterest (vtkIdType) |
These methods are for debugging or instructional purposes. More... | |
virtual vtkIdType | GetPointOfInterest () |
These methods are for debugging or instructional purposes. More... | |
virtual void | SetMaximumNumberOfTileClips (vtkIdType) |
These methods are for debugging or instructional purposes. More... | |
virtual vtkIdType | GetMaximumNumberOfTileClips () |
These methods are for debugging or instructional purposes. More... | |
vtkStaticPointLocator2D * | GetLocator () |
Retrieve the internal locator to manually configure it, for example specifying the number of points per bucket. More... | |
virtual void | SetGenerateVoronoiFlower (vtkTypeBool) |
These methods are for debugging or instructional purposes. More... | |
virtual vtkTypeBool | GetGenerateVoronoiFlower () |
These methods are for debugging or instructional purposes. More... | |
virtual void | GenerateVoronoiFlowerOn () |
These methods are for debugging or instructional purposes. More... | |
virtual void | GenerateVoronoiFlowerOff () |
These methods are for debugging or instructional purposes. More... | |
virtual vtkSpheres * | GetSpheres () |
Return the Voronoi flower (a collection of spheres) for the point of interest in the form of a vtkSpheres implicit function. More... | |
![]() | |
virtual vtkTypeBool | IsA (const char *type) |
Return 1 if this class is the same type of (or a subclass of) the named class. More... | |
vtkPolyDataAlgorithm * | NewInstance () const |
void | PrintSelf (ostream &os, vtkIndent indent) override |
Methods invoked by print to print information about the object including superclasses. More... | |
vtkTypeBool | ProcessRequest (vtkInformation *, vtkInformationVector **, vtkInformationVector *) override |
see vtkAlgorithm for details More... | |
vtkDataObject * | GetInput () |
vtkDataObject * | GetInput (int port) |
vtkPolyData * | GetPolyDataInput (int port) |
vtkPolyData * | GetOutput () |
Get the output data object for a port on this algorithm. More... | |
vtkPolyData * | GetOutput (int) |
Get the output data object for a port on this algorithm. More... | |
virtual void | SetOutput (vtkDataObject *d) |
Get the output data object for a port on this algorithm. More... | |
void | SetInputData (vtkDataObject *) |
Assign a data object as input. More... | |
void | SetInputData (int, vtkDataObject *) |
Assign a data object as input. More... | |
void | AddInputData (vtkDataObject *) |
Assign a data object as input. More... | |
void | AddInputData (int, vtkDataObject *) |
Assign a data object as input. More... | |
![]() | |
virtual vtkTypeBool | IsA (const char *type) |
Return 1 if this class is the same type of (or a subclass of) the named class. More... | |
vtkAlgorithm * | NewInstance () const |
void | PrintSelf (ostream &os, vtkIndent indent) override |
Methods invoked by print to print information about the object including superclasses. More... | |
int | HasExecutive () |
Check whether this algorithm has an assigned executive. More... | |
vtkExecutive * | GetExecutive () |
Get this algorithm's executive. More... | |
virtual void | SetExecutive (vtkExecutive *executive) |
Set this algorithm's executive. More... | |
virtual vtkTypeBool | ProcessRequest (vtkInformation *request, vtkInformationVector **inInfo, vtkInformationVector *outInfo) |
Upstream/Downstream requests form the generalized interface through which executives invoke a algorithm's functionality. More... | |
vtkTypeBool | ProcessRequest (vtkInformation *request, vtkCollection *inInfo, vtkInformationVector *outInfo) |
Version of ProcessRequest() that is wrapped. More... | |
virtual int | ComputePipelineMTime (vtkInformation *request, vtkInformationVector **inInfoVec, vtkInformationVector *outInfoVec, int requestFromOutputPort, vtkMTimeType *mtime) |
A special version of ProcessRequest meant specifically for the pipeline modified time request. More... | |
virtual int | ModifyRequest (vtkInformation *request, int when) |
This method gives the algorithm a chance to modify the contents of a request before or after (specified in the when argument) it is forwarded. More... | |
vtkInformation * | GetInputPortInformation (int port) |
Get the information object associated with an input port. More... | |
vtkInformation * | GetOutputPortInformation (int port) |
Get the information object associated with an output port. More... | |
int | GetNumberOfInputPorts () |
Get the number of input ports used by the algorithm. More... | |
int | GetNumberOfOutputPorts () |
Get the number of output ports provided by the algorithm. More... | |
void | SetProgress (double) |
SetProgress is deprecated. More... | |
void | UpdateProgress (double amount) |
Update the progress of the process object. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, const char *fieldAssociation, const char *attributeTypeorName) |
String based versions of SetInputArrayToProcess(). More... | |
vtkInformation * | GetInputArrayInformation (int idx) |
Get the info object for the specified input array to this algorithm. More... | |
void | RemoveAllInputs () |
Remove all the input data. More... | |
vtkDataObject * | GetOutputDataObject (int port) |
Get the data object that will contain the algorithm output for the given port. More... | |
vtkDataObject * | GetInputDataObject (int port, int connection) |
Get the data object that will contain the algorithm input for the given port and given connection. More... | |
virtual void | RemoveInputConnection (int port, vtkAlgorithmOutput *input) |
Remove a connection from the given input port index. More... | |
virtual void | RemoveInputConnection (int port, int idx) |
Remove a connection given by index idx. More... | |
virtual void | RemoveAllInputConnections (int port) |
Removes all input connections. More... | |
virtual void | SetInputDataObject (int port, vtkDataObject *data) |
Sets the data-object as an input on the given port index. More... | |
virtual void | SetInputDataObject (vtkDataObject *data) |
virtual void | AddInputDataObject (int port, vtkDataObject *data) |
Add the data-object as an input to this given port. More... | |
virtual void | AddInputDataObject (vtkDataObject *data) |
vtkAlgorithmOutput * | GetOutputPort (int index) |
Get a proxy object corresponding to the given output port of this algorithm. More... | |
vtkAlgorithmOutput * | GetOutputPort () |
int | GetNumberOfInputConnections (int port) |
Get the number of inputs currently connected to a port. More... | |
int | GetTotalNumberOfInputConnections () |
Get the total number of inputs for this algorithm. More... | |
vtkAlgorithmOutput * | GetInputConnection (int port, int index) |
Get the algorithm output port connected to an input port. More... | |
vtkAlgorithm * | GetInputAlgorithm (int port, int index, int &algPort) |
Returns the algorithm and the output port index of that algorithm connected to a port-index pair. More... | |
vtkAlgorithm * | GetInputAlgorithm (int port, int index) |
Returns the algorithm connected to a port-index pair. More... | |
vtkAlgorithm * | GetInputAlgorithm () |
Equivalent to GetInputAlgorithm(0, 0). More... | |
vtkExecutive * | GetInputExecutive (int port, int index) |
Returns the executive associated with a particular input connection. More... | |
vtkExecutive * | GetInputExecutive () |
Equivalent to GetInputExecutive(0, 0) More... | |
vtkInformation * | GetInputInformation (int port, int index) |
Return the information object that is associated with a particular input connection. More... | |
vtkInformation * | GetInputInformation () |
Equivalent to GetInputInformation(0, 0) More... | |
vtkInformation * | GetOutputInformation (int port) |
Return the information object that is associated with a particular output port. More... | |
virtual vtkTypeBool | Update (int port, vtkInformationVector *requests) |
This method enables the passing of data requests to the algorithm to be used during execution (in addition to bringing a particular port up-to-date). More... | |
virtual vtkTypeBool | Update (vtkInformation *requests) |
Convenience method to update an algorithm after passing requests to its first output port. More... | |
virtual int | UpdatePiece (int piece, int numPieces, int ghostLevels, const int extents[6]=nullptr) |
Convenience method to update an algorithm after passing requests to its first output port. More... | |
virtual int | UpdateExtent (const int extents[6]) |
Convenience method to update an algorithm after passing requests to its first output port. More... | |
virtual int | UpdateTimeStep (double time, int piece=-1, int numPieces=1, int ghostLevels=0, const int extents[6]=nullptr) |
Convenience method to update an algorithm after passing requests to its first output port. More... | |
virtual void | UpdateInformation () |
Bring the algorithm's information up-to-date. More... | |
virtual void | UpdateDataObject () |
Create output object(s). More... | |
virtual void | PropagateUpdateExtent () |
Propagate meta-data upstream. More... | |
virtual void | UpdateWholeExtent () |
Bring this algorithm's outputs up-to-date. More... | |
void | ConvertTotalInputToPortConnection (int ind, int &port, int &conn) |
Convenience routine to convert from a linear ordering of input connections to a port/connection pair. More... | |
virtual vtkInformation * | GetInformation () |
Set/Get the information object associated with this algorithm. More... | |
virtual void | SetInformation (vtkInformation *) |
Set/Get the information object associated with this algorithm. More... | |
void | Register (vtkObjectBase *o) override |
Participate in garbage collection. More... | |
void | UnRegister (vtkObjectBase *o) override |
Participate in garbage collection. More... | |
virtual void | SetAbortExecute (vtkTypeBool) |
Set/Get the AbortExecute flag for the process object. More... | |
virtual vtkTypeBool | GetAbortExecute () |
Set/Get the AbortExecute flag for the process object. More... | |
virtual void | AbortExecuteOn () |
Set/Get the AbortExecute flag for the process object. More... | |
virtual void | AbortExecuteOff () |
Set/Get the AbortExecute flag for the process object. More... | |
virtual double | GetProgress () |
Get the execution progress of a process object. More... | |
void | SetProgressShiftScale (double shift, double scale) |
Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called. More... | |
virtual double | GetProgressShift () |
Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called. More... | |
virtual double | GetProgressScale () |
Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called. More... | |
void | SetProgressText (const char *ptext) |
Set the current text message associated with the progress state. More... | |
virtual char * | GetProgressText () |
Set the current text message associated with the progress state. More... | |
virtual unsigned long | GetErrorCode () |
The error code contains a possible error that occurred while reading or writing the file. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, const char *name) |
Set the input data arrays that this algorithm will process. More... | |
virtual void | SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, int fieldAttributeType) |
Set the input data arrays that this algorithm will process. More... | |
virtual void | SetInputArrayToProcess (int idx, vtkInformation *info) |
Set the input data arrays that this algorithm will process. More... | |
virtual void | SetInputConnection (int port, vtkAlgorithmOutput *input) |
Set the connection for the given input port index. More... | |
virtual void | SetInputConnection (vtkAlgorithmOutput *input) |
Set the connection for the given input port index. More... | |
virtual void | AddInputConnection (int port, vtkAlgorithmOutput *input) |
Add a connection to the given input port index. More... | |
virtual void | AddInputConnection (vtkAlgorithmOutput *input) |
Add a connection to the given input port index. More... | |
virtual void | Update (int port) |
Bring this algorithm's outputs up-to-date. More... | |
virtual void | Update () |
Bring this algorithm's outputs up-to-date. More... | |
virtual void | SetReleaseDataFlag (int) |
Turn release data flag on or off for all output ports. More... | |
virtual int | GetReleaseDataFlag () |
Turn release data flag on or off for all output ports. More... | |
void | ReleaseDataFlagOn () |
Turn release data flag on or off for all output ports. More... | |
void | ReleaseDataFlagOff () |
Turn release data flag on or off for all output ports. More... | |
int | UpdateExtentIsEmpty (vtkInformation *pinfo, vtkDataObject *output) |
This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. More... | |
int | UpdateExtentIsEmpty (vtkInformation *pinfo, int extentType) |
This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. More... | |
int * | GetUpdateExtent () |
These functions return the update extent for output ports that use 3D extents. More... | |
int * | GetUpdateExtent (int port) |
These functions return the update extent for output ports that use 3D extents. More... | |
void | GetUpdateExtent (int &x0, int &x1, int &y0, int &y1, int &z0, int &z1) |
These functions return the update extent for output ports that use 3D extents. More... | |
void | GetUpdateExtent (int port, int &x0, int &x1, int &y0, int &y1, int &z0, int &z1) |
These functions return the update extent for output ports that use 3D extents. More... | |
void | GetUpdateExtent (int extent[6]) |
These functions return the update extent for output ports that use 3D extents. More... | |
void | GetUpdateExtent (int port, int extent[6]) |
These functions return the update extent for output ports that use 3D extents. More... | |
int | GetUpdatePiece () |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdatePiece (int port) |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdateNumberOfPieces () |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdateNumberOfPieces (int port) |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdateGhostLevel () |
These functions return the update extent for output ports that use piece extents. More... | |
int | GetUpdateGhostLevel (int port) |
These functions return the update extent for output ports that use piece extents. More... | |
void | SetProgressObserver (vtkProgressObserver *) |
If an ProgressObserver is set, the algorithm will report progress through it rather than directly. More... | |
virtual vtkProgressObserver * | GetProgressObserver () |
If an ProgressObserver is set, the algorithm will report progress through it rather than directly. More... | |
![]() | |
vtkBaseTypeMacro (vtkObject, vtkObjectBase) | |
virtual void | DebugOn () |
Turn debugging output on. More... | |
virtual void | DebugOff () |
Turn debugging output off. More... | |
bool | GetDebug () |
Get the value of the debug flag. More... | |
void | SetDebug (bool debugFlag) |
Set the value of the debug flag. More... | |
virtual void | Modified () |
Update the modification time for this object. More... | |
virtual vtkMTimeType | GetMTime () |
Return this object's modified time. More... | |
void | PrintSelf (ostream &os, vtkIndent indent) override |
Methods invoked by print to print information about the object including superclasses. More... | |
void | RemoveObserver (unsigned long tag) |
void | RemoveObservers (unsigned long event) |
void | RemoveObservers (const char *event) |
void | RemoveAllObservers () |
vtkTypeBool | HasObserver (unsigned long event) |
vtkTypeBool | HasObserver (const char *event) |
int | InvokeEvent (unsigned long event) |
int | InvokeEvent (const char *event) |
unsigned long | AddObserver (unsigned long event, vtkCommand *, float priority=0.0f) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
unsigned long | AddObserver (const char *event, vtkCommand *, float priority=0.0f) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
vtkCommand * | GetCommand (unsigned long tag) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObserver (vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObservers (unsigned long event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
void | RemoveObservers (const char *event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
vtkTypeBool | HasObserver (unsigned long event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
vtkTypeBool | HasObserver (const char *event, vtkCommand *) |
Allow people to add/remove/invoke observers (callbacks) to any VTK object. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f) |
Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More... | |
template<class U , class T > | |
unsigned long | AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f) |
Allow user to set the AbortFlagOn() with the return value of the callback method. More... | |
int | InvokeEvent (unsigned long event, void *callData) |
This method invokes an event and return whether the event was aborted or not. More... | |
int | InvokeEvent (const char *event, void *callData) |
This method invokes an event and return whether the event was aborted or not. More... | |
![]() | |
const char * | GetClassName () const |
Return the class name as a string. More... | |
virtual vtkTypeBool | IsA (const char *name) |
Return 1 if this class is the same type of (or a subclass of) the named class. More... | |
virtual vtkIdType | GetNumberOfGenerationsFromBase (const char *name) |
Given the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class). More... | |
virtual void | Delete () |
Delete a VTK object. More... | |
virtual void | FastDelete () |
Delete a reference to this object. More... | |
void | InitializeObjectBase () |
void | Print (ostream &os) |
Print an object to an ostream. More... | |
virtual void | Register (vtkObjectBase *o) |
Increase the reference count (mark as used by another object). More... | |
virtual void | UnRegister (vtkObjectBase *o) |
Decrease the reference count (release by another object). More... | |
int | GetReferenceCount () |
Return the current reference count of this object. More... | |
void | SetReferenceCount (int) |
Sets the reference count. More... | |
bool | GetIsInMemkind () const |
A local state flag that remembers whether this object lives in the normal or extended memory space. More... | |
virtual void | PrintHeader (ostream &os, vtkIndent indent) |
Methods invoked by print to print information about the object including superclasses. More... | |
virtual void | PrintTrailer (ostream &os, vtkIndent indent) |
Methods invoked by print to print information about the object including superclasses. More... | |
Protected Member Functions | |
vtkVoronoi2D () | |
~vtkVoronoi2D () override | |
int | RequestData (vtkInformation *, vtkInformationVector **, vtkInformationVector *) override |
This is called by the superclass. More... | |
int | FillInputPortInformation (int, vtkInformation *) override |
Fill the input port information objects for this algorithm. More... | |
![]() | |
virtual vtkObjectBase * | NewInstanceInternal () const |
vtkPolyDataAlgorithm () | |
~vtkPolyDataAlgorithm () override | |
virtual int | RequestInformation (vtkInformation *request, vtkInformationVector **inputVector, vtkInformationVector *outputVector) |
virtual int | RequestData (vtkInformation *request, vtkInformationVector **inputVector, vtkInformationVector *outputVector) |
This is called by the superclass. More... | |
virtual int | RequestUpdateExtent (vtkInformation *, vtkInformationVector **, vtkInformationVector *) |
This is called by the superclass. More... | |
int | FillOutputPortInformation (int port, vtkInformation *info) override |
Fill the output port information objects for this algorithm. More... | |
int | FillInputPortInformation (int port, vtkInformation *info) override |
Fill the input port information objects for this algorithm. More... | |
![]() | |
virtual vtkObjectBase * | NewInstanceInternal () const |
vtkAlgorithm () | |
~vtkAlgorithm () override | |
virtual int | FillInputPortInformation (int port, vtkInformation *info) |
Fill the input port information objects for this algorithm. More... | |
virtual int | FillOutputPortInformation (int port, vtkInformation *info) |
Fill the output port information objects for this algorithm. More... | |
virtual void | SetNumberOfInputPorts (int n) |
Set the number of input ports used by the algorithm. More... | |
virtual void | SetNumberOfOutputPorts (int n) |
Set the number of output ports provided by the algorithm. More... | |
int | InputPortIndexInRange (int index, const char *action) |
int | OutputPortIndexInRange (int index, const char *action) |
int | GetInputArrayAssociation (int idx, vtkInformationVector **inputVector) |
Get the assocition of the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkInformation * | GetInputArrayFieldInformation (int idx, vtkInformationVector **inputVector) |
This method takes in an index (as specified in SetInputArrayToProcess) and a pipeline information vector. More... | |
virtual vtkExecutive * | CreateDefaultExecutive () |
Create a default executive. More... | |
void | ReportReferences (vtkGarbageCollector *) override |
virtual void | SetNthInputConnection (int port, int index, vtkAlgorithmOutput *input) |
Replace the Nth connection on the given input port. More... | |
virtual void | SetNumberOfInputConnections (int port, int n) |
Set the number of input connections on the given input port. More... | |
void | SetInputDataInternal (int port, vtkDataObject *input) |
These methods are used by subclasses to implement methods to set data objects directly as input. More... | |
void | AddInputDataInternal (int port, vtkDataObject *input) |
int | GetInputArrayAssociation (int idx, int connection, vtkInformationVector **inputVector) |
Filters that have multiple connections on one port can use this signature. More... | |
int | GetInputArrayAssociation (int idx, vtkDataObject *input) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, vtkInformationVector **inputVector) |
Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, vtkInformationVector **inputVector, int &association) |
Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, vtkDataObject *input) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkDataArray * | GetInputArrayToProcess (int idx, vtkDataObject *input, int &association) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector) |
Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector, int &association) |
Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, vtkDataObject *input) |
Filters that have multiple connections on one port can use this signature. More... | |
vtkAbstractArray * | GetInputAbstractArrayToProcess (int idx, vtkDataObject *input, int &association) |
Filters that have multiple connections on one port can use this signature. More... | |
virtual void | SetErrorCode (unsigned long) |
The error code contains a possible error that occurred while reading or writing the file. More... | |
![]() | |
vtkObject () | |
~vtkObject () override | |
void | RegisterInternal (vtkObjectBase *, vtkTypeBool check) override |
void | UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override |
void | InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=nullptr) |
These methods allow a command to exclusively grab all events. More... | |
void | InternalReleaseFocus () |
These methods allow a command to exclusively grab all events. More... | |
![]() | |
vtkObjectBase () | |
virtual | ~vtkObjectBase () |
virtual void | RegisterInternal (vtkObjectBase *, vtkTypeBool check) |
virtual void | UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) |
virtual void | ReportReferences (vtkGarbageCollector *) |
vtkObjectBase (const vtkObjectBase &) | |
void | operator= (const vtkObjectBase &) |
Protected Attributes | |
int | GenerateScalars |
double | Padding |
double | Tolerance |
int | ProjectionPlaneMode |
vtkStaticPointLocator2D * | Locator |
vtkAbstractTransform * | Transform |
vtkIdType | PointOfInterest |
vtkIdType | MaximumNumberOfTileClips |
vtkTypeBool | GenerateVoronoiFlower |
int | NumberOfThreadsUsed |
vtkSpheres * | Spheres |
![]() | |
vtkInformation * | Information |
double | Progress |
char * | ProgressText |
vtkProgressObserver * | ProgressObserver |
unsigned long | ErrorCode |
The error code contains a possible error that occurred while reading or writing the file. More... | |
![]() | |
bool | Debug |
vtkTimeStamp | MTime |
vtkSubjectHelper * | SubjectHelper |
![]() | |
std::atomic< int32_t > | ReferenceCount |
vtkWeakPointerBase ** | WeakPointers |
typedef vtkPolyDataAlgorithm | Superclass |
Standard methods for instantiation, type information, and printing. More... | |
static vtkVoronoi2D * | New () |
Standard methods for instantiation, type information, and printing. More... | |
static vtkTypeBool | IsTypeOf (const char *type) |
Standard methods for instantiation, type information, and printing. More... | |
static vtkVoronoi2D * | SafeDownCast (vtkObjectBase *o) |
Standard methods for instantiation, type information, and printing. More... | |
virtual vtkTypeBool | IsA (const char *type) |
Standard methods for instantiation, type information, and printing. More... | |
vtkVoronoi2D * | NewInstance () const |
Standard methods for instantiation, type information, and printing. More... | |
void | PrintSelf (ostream &os, vtkIndent indent) override |
Standard methods for instantiation, type information, and printing. More... | |
virtual vtkObjectBase * | NewInstanceInternal () const |
Standard methods for instantiation, type information, and printing. More... | |
Additional Inherited Members | |
![]() | |
static vtkPolyDataAlgorithm * | New () |
static vtkTypeBool | IsTypeOf (const char *type) |
static vtkPolyDataAlgorithm * | SafeDownCast (vtkObjectBase *o) |
![]() | |
static vtkAlgorithm * | New () |
static vtkTypeBool | IsTypeOf (const char *type) |
static vtkAlgorithm * | SafeDownCast (vtkObjectBase *o) |
static vtkInformationIntegerKey * | INPUT_IS_OPTIONAL () |
Keys used to specify input port requirements. More... | |
static vtkInformationIntegerKey * | INPUT_IS_REPEATABLE () |
static vtkInformationInformationVectorKey * | INPUT_REQUIRED_FIELDS () |
static vtkInformationStringVectorKey * | INPUT_REQUIRED_DATA_TYPE () |
static vtkInformationInformationVectorKey * | INPUT_ARRAYS_TO_PROCESS () |
static vtkInformationIntegerKey * | INPUT_PORT () |
static vtkInformationIntegerKey * | INPUT_CONNECTION () |
static vtkInformationIntegerKey * | CAN_PRODUCE_SUB_EXTENT () |
This key tells the executive that a particular output port is capable of producing an arbitrary subextent of the whole extent. More... | |
static vtkInformationIntegerKey * | CAN_HANDLE_PIECE_REQUEST () |
Key that tells the pipeline that a particular algorithm can or cannot handle piece request. More... | |
static void | SetDefaultExecutivePrototype (vtkExecutive *proto) |
If the DefaultExecutivePrototype is set, a copy of it is created in CreateDefaultExecutive() using NewInstance(). More... | |
![]() | |
static vtkObject * | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
static void | BreakOnError () |
This method is called when vtkErrorMacro executes. More... | |
static void | SetGlobalWarningDisplay (int val) |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOn () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static void | GlobalWarningDisplayOff () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
static int | GetGlobalWarningDisplay () |
This is a global flag that controls whether any debug, warning or error messages are displayed. More... | |
![]() | |
static vtkTypeBool | IsTypeOf (const char *name) |
Return 1 if this class type is the same type of (or a subclass of) the named class. More... | |
static vtkIdType | GetNumberOfGenerationsFromBaseType (const char *name) |
Given a the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class). More... | |
static vtkObjectBase * | New () |
Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More... | |
static void | SetMemkindDirectory (const char *directoryname) |
The name of a directory, ideally mounted -o dax, to memory map an extended memory space within. More... | |
static bool | GetUsingMemkind () |
A global state flag that controls whether vtkObjects are constructed in the usual way (the default) or within the extended memory space. More... | |
![]() | |
vtkTypeBool | AbortExecute |
![]() | |
static vtkInformationIntegerKey * | PORT_REQUIREMENTS_FILLED () |
![]() | |
static vtkMallocingFunction | GetCurrentMallocFunction () |
static vtkReallocingFunction | GetCurrentReallocFunction () |
static vtkFreeingFunction | GetCurrentFreeFunction () |
static vtkFreeingFunction | GetAlternateFreeFunction () |
![]() | |
static vtkExecutive * | DefaultExecutivePrototype |
create 2D Voronoi convex tiling of input points
vtkVoronoi2D is a filter that constructs a 2D Voronoi tessellation of a list of input points. The points are assumed to lie in a plane. These points may be represented by any dataset of type vtkPointSet and subclasses. The output of the filter is a polygonal dataset. Each output cell is a convex polygon.
The 2D Voronoi tessellation is a tiling of space, where each Voronoi tile represents the region nearest to one of the input points. Voronoi tessellations are important in computational geometry (and many other fields), and are the dual of Delaunay triangulations.
The input to this filter is a list of points specified in 3D, even though the triangulation is 2D. Thus the triangulation is constructed in the x-y plane, and the z coordinate is ignored (although carried through to the output). If you desire to triangulate in a different plane, you can use the vtkTransformFilter to transform the points into and out of the x-y plane or you can specify a transform to vtkVoronoi2D directly. In the latter case, the input points are transformed, the transformed points are triangulated, and the output will use the triangulated topology for the original (non-transformed) points. This avoids transforming the data back as would be required when using the vtkTransformFilter method. Specifying a transform directly also allows any transform to be used: rigid, non-rigid, non-invertible, etc.
This filter is a reference implementation written with simplicity in mind. Additional methods are available for debugging / instructional purposes. This includes producing a single tile under various stages of creation, as well as the Voronoi flower, related to the error metric for point insertion / half-space clipping.
Publications are in preparation to describe the algorithm. A brief summary is as follows. In parallel, each (generating) input point is associated with an initial Voronoi tile, which is simply the bounding box of the point set. A locator is then used to identify nearby points: each neighbor in turn generates a clipping line positioned halfway between the generating point and the neighboring point, and orthogonal to the line connecting them. Clips are readily performed by evaluationg the vertices of the convex Voronoi tile as being on either side (inside,outside) of the clip line. If two intersections of the Voronoi tile are found, the portion of the tile "outside" the clip line is discarded, resulting in a new convex, Voronoi tile. As each clip occurs, the Voronoi "Flower" error metric (the union of error spheres) is compared to the extent of the region containing the neighboring clip points. The clip region (along with the points contained in it) is grown by careful expansion (e.g., outward spiraling iterator over all candidate clip points). When the Voronoi Flower is contained within the clip region, the algorithm terminates and the Voronoi tile is output. Once complete, it is possible to construct the Delaunay triangulation from the Voronoi tessellation. Note that topological and geometric information is used to generate a valid triangulation (e.g., merging points and validating topology).
Definition at line 102 of file vtkVoronoi2D.h.
Standard methods for instantiation, type information, and printing.
Definition at line 110 of file vtkVoronoi2D.h.
Enumerator | |
---|---|
NONE | |
POINT_IDS | |
THREAD_IDS |
Definition at line 125 of file vtkVoronoi2D.h.
Enumerator | |
---|---|
XY_PLANE | |
SPECIFIED_TRANSFORM_PLANE | |
BEST_FITTING_PLANE |
Definition at line 159 of file vtkVoronoi2D.h.
|
protected |
|
overrideprotected |
|
static |
Standard methods for instantiation, type information, and printing.
|
static |
Standard methods for instantiation, type information, and printing.
|
virtual |
Standard methods for instantiation, type information, and printing.
Reimplemented from vtkPolyDataAlgorithm.
|
static |
Standard methods for instantiation, type information, and printing.
|
protectedvirtual |
Standard methods for instantiation, type information, and printing.
Reimplemented from vtkPolyDataAlgorithm.
vtkVoronoi2D * vtkVoronoi2D::NewInstance | ( | ) | const |
Standard methods for instantiation, type information, and printing.
|
overridevirtual |
Standard methods for instantiation, type information, and printing.
Reimplemented from vtkPolyDataAlgorithm.
|
virtual |
Specify a padding for the bounding box of the points.
A >0 padding is necessary in order to create valid Voronoi tiles on the boundary of the tessellation. The padding is specified as a fraction of the diagonal length of the bounding box of the points.
|
virtual |
Specify a padding for the bounding box of the points.
A >0 padding is necessary in order to create valid Voronoi tiles on the boundary of the tessellation. The padding is specified as a fraction of the diagonal length of the bounding box of the points.
|
virtual |
Indicate whether to create a scalar array as part of the output.
No scalars; point ids, or execution thread ids may be output. By default no scalars are generated.
|
virtual |
Indicate whether to create a scalar array as part of the output.
No scalars; point ids, or execution thread ids may be output. By default no scalars are generated.
|
inline |
Indicate whether to create a scalar array as part of the output.
No scalars; point ids, or execution thread ids may be output. By default no scalars are generated.
Definition at line 140 of file vtkVoronoi2D.h.
|
inline |
Indicate whether to create a scalar array as part of the output.
No scalars; point ids, or execution thread ids may be output. By default no scalars are generated.
Definition at line 141 of file vtkVoronoi2D.h.
|
inline |
Indicate whether to create a scalar array as part of the output.
No scalars; point ids, or execution thread ids may be output. By default no scalars are generated.
Definition at line 142 of file vtkVoronoi2D.h.
|
virtual |
Set / get the transform which is applied to points to generate a 2D problem.
This maps a 3D dataset into a 2D dataset where triangulation can be done on the XY plane. The points are then tessellated and the topology of tessellation are used as the output topology. The output points are the original (untransformed) points. The transform can be any subclass of vtkAbstractTransform (thus it does not need to be a linear or invertible transform).
|
virtual |
Set / get the transform which is applied to points to generate a 2D problem.
This maps a 3D dataset into a 2D dataset where triangulation can be done on the XY plane. The points are then tessellated and the topology of tessellation are used as the output topology. The output points are the original (untransformed) points. The transform can be any subclass of vtkAbstractTransform (thus it does not need to be a linear or invertible transform).
|
virtual |
Define the method to project the input 3D points into a 2D plane for tessellation.
When the VTK_XY_PLANE is set, the z-coordinate is simply ignored. When VTK_SET_TRANSFORM_PLANE is set, then a transform must be supplied and the points are transformed using it. Finally, if VTK_BEST_FITTING_PLANE is set, then the filter computes a best fitting plane and projects the points onto it.
|
virtual |
Define the method to project the input 3D points into a 2D plane for tessellation.
When the VTK_XY_PLANE is set, the z-coordinate is simply ignored. When VTK_SET_TRANSFORM_PLANE is set, then a transform must be supplied and the points are transformed using it. Finally, if VTK_BEST_FITTING_PLANE is set, then the filter computes a best fitting plane and projects the points onto it.
|
inline |
Define the method to project the input 3D points into a 2D plane for tessellation.
When the VTK_XY_PLANE is set, the z-coordinate is simply ignored. When VTK_SET_TRANSFORM_PLANE is set, then a transform must be supplied and the points are transformed using it. Finally, if VTK_BEST_FITTING_PLANE is set, then the filter computes a best fitting plane and projects the points onto it.
Definition at line 177 of file vtkVoronoi2D.h.
|
inline |
Define the method to project the input 3D points into a 2D plane for tessellation.
When the VTK_XY_PLANE is set, the z-coordinate is simply ignored. When VTK_SET_TRANSFORM_PLANE is set, then a transform must be supplied and the points are transformed using it. Finally, if VTK_BEST_FITTING_PLANE is set, then the filter computes a best fitting plane and projects the points onto it.
Definition at line 178 of file vtkVoronoi2D.h.
|
inline |
Define the method to project the input 3D points into a 2D plane for tessellation.
When the VTK_XY_PLANE is set, the z-coordinate is simply ignored. When VTK_SET_TRANSFORM_PLANE is set, then a transform must be supplied and the points are transformed using it. Finally, if VTK_BEST_FITTING_PLANE is set, then the filter computes a best fitting plane and projects the points onto it.
Definition at line 182 of file vtkVoronoi2D.h.
|
virtual |
These methods are for debugging or instructional purposes.
When the point of interest is specified (i.e., to a non-negative number) then the algorithm will only process this single point (whose id is the PointOfInterest). The maximum number of clips (the MaximumNumberOfTileClips) can be specified. If MaximumNumberOfTileClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfTileClips=VTK_ID_MAX and therefore automatically limited by the algorithm).
|
virtual |
These methods are for debugging or instructional purposes.
When the point of interest is specified (i.e., to a non-negative number) then the algorithm will only process this single point (whose id is the PointOfInterest). The maximum number of clips (the MaximumNumberOfTileClips) can be specified. If MaximumNumberOfTileClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfTileClips=VTK_ID_MAX and therefore automatically limited by the algorithm).
|
virtual |
These methods are for debugging or instructional purposes.
When the point of interest is specified (i.e., to a non-negative number) then the algorithm will only process this single point (whose id is the PointOfInterest). The maximum number of clips (the MaximumNumberOfTileClips) can be specified. If MaximumNumberOfTileClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfTileClips=VTK_ID_MAX and therefore automatically limited by the algorithm).
|
virtual |
These methods are for debugging or instructional purposes.
When the point of interest is specified (i.e., to a non-negative number) then the algorithm will only process this single point (whose id is the PointOfInterest). The maximum number of clips (the MaximumNumberOfTileClips) can be specified. If MaximumNumberOfTileClips=0, then the initial tile (single point within the bounding box) is produced; if =1 then the split with the closest point is produced; and so on. By default the PointOfInterest is set to (-1), and the number of clips is unlimited (i.e., MaximumNumberOfTileClips=VTK_ID_MAX and therefore automatically limited by the algorithm).
|
inline |
Retrieve the internal locator to manually configure it, for example specifying the number of points per bucket.
This method is generally used for debugging or testing purposes.
Definition at line 214 of file vtkVoronoi2D.h.
|
virtual |
These methods are for debugging or instructional purposes.
If GenerateVoronoiFlower is on, and the PointOfIntersect is specified, then second and third (optional) outputs are populated which contains a representation of the Voronoi flower error metric (second output) and the single Voronoi tile (corresponding to PointOfInterest) with point scalar values indicating the radii of the Voronoi Flower petals (i.e., circles contributing to the error metric).
|
virtual |
These methods are for debugging or instructional purposes.
If GenerateVoronoiFlower is on, and the PointOfIntersect is specified, then second and third (optional) outputs are populated which contains a representation of the Voronoi flower error metric (second output) and the single Voronoi tile (corresponding to PointOfInterest) with point scalar values indicating the radii of the Voronoi Flower petals (i.e., circles contributing to the error metric).
|
virtual |
These methods are for debugging or instructional purposes.
If GenerateVoronoiFlower is on, and the PointOfIntersect is specified, then second and third (optional) outputs are populated which contains a representation of the Voronoi flower error metric (second output) and the single Voronoi tile (corresponding to PointOfInterest) with point scalar values indicating the radii of the Voronoi Flower petals (i.e., circles contributing to the error metric).
|
virtual |
These methods are for debugging or instructional purposes.
If GenerateVoronoiFlower is on, and the PointOfIntersect is specified, then second and third (optional) outputs are populated which contains a representation of the Voronoi flower error metric (second output) and the single Voronoi tile (corresponding to PointOfInterest) with point scalar values indicating the radii of the Voronoi Flower petals (i.e., circles contributing to the error metric).
|
virtual |
Return the Voronoi flower (a collection of spheres) for the point of interest in the form of a vtkSpheres implicit function.
This is valid only if GenerateVoronoiFlower and the PointOfInterest are set, and after the filter executes. Typically this is used for debugging or educational purposes.
|
inline |
Return the number of threads actually used during execution.
This is valid only after algorithm execution.
Definition at line 247 of file vtkVoronoi2D.h.
|
overridevirtual |
Get the MTime of this object also considering the locator.
Reimplemented from vtkObject.
|
overrideprotectedvirtual |
This is called by the superclass.
This is the method you should override.
Reimplemented from vtkPolyDataAlgorithm.
|
overrideprotectedvirtual |
Fill the input port information objects for this algorithm.
This is invoked by the first call to GetInputPortInformation for each port so subclasses can specify what they can handle.
Reimplemented from vtkPolyDataAlgorithm.
|
protected |
Definition at line 258 of file vtkVoronoi2D.h.
|
protected |
Definition at line 259 of file vtkVoronoi2D.h.
|
protected |
Definition at line 260 of file vtkVoronoi2D.h.
|
protected |
Definition at line 261 of file vtkVoronoi2D.h.
|
protected |
Definition at line 262 of file vtkVoronoi2D.h.
|
protected |
Definition at line 263 of file vtkVoronoi2D.h.
|
protected |
Definition at line 264 of file vtkVoronoi2D.h.
|
protected |
Definition at line 265 of file vtkVoronoi2D.h.
|
protected |
Definition at line 266 of file vtkVoronoi2D.h.
|
protected |
Definition at line 267 of file vtkVoronoi2D.h.
|
protected |
Definition at line 268 of file vtkVoronoi2D.h.