VTK  9.1.0
vtkStreamTracer.h
Go to the documentation of this file.
1/*=========================================================================
2
3 Program: Visualization Toolkit
4 Module: vtkStreamTracer.h
5
6 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
7 All rights reserved.
8 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
9
10 This software is distributed WITHOUT ANY WARRANTY; without even
11 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
12 PURPOSE. See the above copyright notice for more information.
13
14=========================================================================*/
195#ifndef vtkStreamTracer_h
196#define vtkStreamTracer_h
197
198#include "vtkFiltersFlowPathsModule.h" // For export macro
199#include "vtkPolyDataAlgorithm.h"
200
201#include "vtkInitialValueProblemSolver.h" // Needed for constants
202
205class vtkDataArray;
207class vtkDoubleArray;
208class vtkExecutive;
209class vtkGenericCell;
210class vtkIdList;
211class vtkIntArray;
212class vtkPoints;
213
214#include <vector> // for std::vector
215
216class VTKFILTERSFLOWPATHS_EXPORT vtkStreamTracer : public vtkPolyDataAlgorithm
217{
218public:
220 void PrintSelf(ostream& os, vtkIndent indent) override;
221
230
232
237 vtkSetVector3Macro(StartPosition, double);
238 vtkGetVector3Macro(StartPosition, double);
240
242
251
257
258 // The previously-supported TIME_UNIT is excluded in this current
259 // enumeration definition because the underlying step size is ALWAYS in
260 // arc length unit (LENGTH_UNIT) while the 'real' time interval (virtual
261 // for steady flows) that a particle actually takes to trave in a single
262 // step is obtained by dividing the arc length by the LOCAL speed. The
263 // overall elapsed time (i.e., the life span) of the particle is the sum
264 // of those individual step-wise time intervals. The arc-length-to-time
265 // conversion only occurs for vorticity computation and for generating a
266 // point data array named 'IntegrationTime'.
267 enum Units
268 {
269 LENGTH_UNIT = 1,
270 CELL_LENGTH_UNIT = 2
271 };
272
274 {
279 UNKNOWN
280 };
281
283 {
287 OUT_OF_LENGTH = 4,
288 OUT_OF_STEPS = 5,
289 STAGNATION = 6,
290 FIXED_REASONS_FOR_TERMINATION_COUNT
291 };
292
294
305 vtkGetObjectMacro(Integrator, vtkInitialValueProblemSolver);
308 void SetIntegratorTypeToRungeKutta2() { this->SetIntegratorType(RUNGE_KUTTA2); }
309 void SetIntegratorTypeToRungeKutta4() { this->SetIntegratorType(RUNGE_KUTTA4); }
310 void SetIntegratorTypeToRungeKutta45() { this->SetIntegratorType(RUNGE_KUTTA45); }
312
318
324
326
329 vtkSetMacro(MaximumPropagation, double);
330 vtkGetMacro(MaximumPropagation, double);
332
340 int GetIntegrationStepUnit() { return this->IntegrationStepUnit; }
341
343
350 vtkSetMacro(InitialIntegrationStep, double);
351 vtkGetMacro(InitialIntegrationStep, double);
353
355
361 vtkSetMacro(MinimumIntegrationStep, double);
362 vtkGetMacro(MinimumIntegrationStep, double);
364
366
372 vtkSetMacro(MaximumIntegrationStep, double);
373 vtkGetMacro(MaximumIntegrationStep, double);
375
377
380 vtkSetMacro(MaximumError, double);
381 vtkGetMacro(MaximumError, double);
383
385
388 vtkSetMacro(MaximumNumberOfSteps, vtkIdType);
389 vtkGetMacro(MaximumNumberOfSteps, vtkIdType);
391
393
396 vtkSetMacro(TerminalSpeed, double);
397 vtkGetMacro(TerminalSpeed, double);
399
401
404 vtkGetMacro(SurfaceStreamlines, bool);
405 vtkSetMacro(SurfaceStreamlines, bool);
406 vtkBooleanMacro(SurfaceStreamlines, bool);
408
409 enum
410 {
413 BOTH
414 };
415
416 enum
417 {
419 INTERPOLATOR_WITH_CELL_LOCATOR
420 };
421
423
427 vtkSetClampMacro(IntegrationDirection, int, FORWARD, BOTH);
428 vtkGetMacro(IntegrationDirection, int);
429 void SetIntegrationDirectionToForward() { this->SetIntegrationDirection(FORWARD); }
430 void SetIntegrationDirectionToBackward() { this->SetIntegrationDirection(BACKWARD); }
431 void SetIntegrationDirectionToBoth() { this->SetIntegrationDirection(BOTH); }
433
435
440 vtkSetMacro(ComputeVorticity, bool);
441 vtkGetMacro(ComputeVorticity, bool);
443
445
449 vtkSetMacro(RotationScale, double);
450 vtkGetMacro(RotationScale, double);
452
454
462 vtkSetMacro(UseLocalSeedSource, bool);
463 vtkGetMacro(UseLocalSeedSource, bool);
464 vtkBooleanMacro(UseLocalSeedSource, bool);
466
472
482 void SetInterpolatorType(int interpType);
483
493 typedef bool (*CustomTerminationCallbackType)(
494 void* clientdata, vtkPoints* points, vtkDataArray* velocity, int integrationDirection);
504 CustomTerminationCallbackType callback, void* clientdata, int reasonForTermination);
505
506protected:
509
510 // Create a default executive.
512
513 // hide the superclass' AddInput() from the user and the compiler
515 {
516 vtkErrorMacro(<< "AddInput() must be called with a vtkDataSet not a vtkDataObject.");
517 }
518
521
523 vtkGenericCell* cell, double pcoords[3], vtkDoubleArray* cellVectors, double vorticity[3]);
524 void Integrate(vtkPointData* inputData, vtkPolyData* output, vtkDataArray* seedSource,
525 vtkIdList* seedIds, vtkIntArray* integrationDirections, double lastPoint[3],
526 vtkAbstractInterpolatedVelocityField* func, int maxCellSize, int vecType,
527 const char* vecFieldName, double& propagation, vtkIdType& numSteps, double& integrationTime);
528 double SimpleIntegrate(double seed[3], double lastPoint[3], double stepSize,
531 void GenerateNormals(vtkPolyData* output, double* firstNormal, const char* vecName);
532
534
535 // starting from global x-y-z position
536 double StartPosition[3];
537
538 static const double EPSILON;
540
542
544 {
545 double Interval;
546 int Unit;
547 };
548
553
555 double& step, double& minStep, double& maxStep, int direction, double cellLength);
556 static double ConvertToLength(double interval, int unit, double cellLength);
557 static double ConvertToLength(IntervalInformation& interval, double cellLength);
558
560 void InitializeSeeds(vtkDataArray*& seeds, vtkIdList*& seedIds,
561 vtkIntArray*& integrationDirections, vtkDataSet* source);
562
565
566 // Prototype showing the integrator type to be set by the user.
568
571
574
575 // Compute streamlines only on surface.
577
578 // Only relevant for the parallel version of this filter (see vtkPStreamTracer)
579 bool UseLocalSeedSource = true;
580
582
584 bool
585 HasMatchingPointAttributes; // does the point data in the multiblocks have the same attributes?
586 std::vector<CustomTerminationCallbackType> CustomTerminationCallback;
587 std::vector<void*> CustomTerminationClientData;
589
590 friend class PStreamTracerUtils;
591
592private:
593 vtkStreamTracer(const vtkStreamTracer&) = delete;
594 void operator=(const vtkStreamTracer&) = delete;
595};
596
597#endif
An abstract class for obtaining the interpolated velocity values at a point.
Proxy object to connect input/output ports.
abstract superclass for composite (multi-block or AMR) datasets
abstract superclass for arrays of numeric data
Definition: vtkDataArray.h:159
general representation of visualization data
represent and manipulate attribute data in a dataset
abstract class to specify dataset behavior
Definition: vtkDataSet.h:166
dynamic, self-adjusting array of double
Superclass for all pipeline executives in VTK.
Definition: vtkExecutive.h:76
provides thread-safe access to cells
list of point or cell ids
Definition: vtkIdList.h:140
a simple class to control print indentation
Definition: vtkIndent.h:113
Store zero or more vtkInformation instances.
Store vtkAlgorithm input/output information.
Integrate a set of ordinary differential equations (initial value problem) in time.
dynamic, self-adjusting array of int
Definition: vtkIntArray.h:149
represent and manipulate point attribute data
Definition: vtkPointData.h:142
represent and manipulate 3D points
Definition: vtkPoints.h:143
Superclass for algorithms that produce only polydata as output.
concrete dataset represents vertices, lines, polygons, and triangle strips
Definition: vtkPolyData.h:195
Streamline generator.
void SetIntegratorTypeToRungeKutta45()
Set/get the integrator type to be used for streamline generation.
int FillInputPortInformation(int, vtkInformation *) override
Fill the input port information objects for this algorithm.
int SetupOutput(vtkInformation *inInfo, vtkInformation *outInfo)
std::vector< void * > CustomTerminationClientData
void Integrate(vtkPointData *inputData, vtkPolyData *output, vtkDataArray *seedSource, vtkIdList *seedIds, vtkIntArray *integrationDirections, double lastPoint[3], vtkAbstractInterpolatedVelocityField *func, int maxCellSize, int vecType, const char *vecFieldName, double &propagation, vtkIdType &numSteps, double &integrationTime)
@ INTERPOLATOR_WITH_DATASET_POINT_LOCATOR
void SetSourceData(vtkDataSet *source)
Specify the source object used to generate starting points (seeds).
vtkDataSet * GetSource()
Specify the source object used to generate starting points (seeds).
double InitialIntegrationStep
vtkAbstractInterpolatedVelocityField * InterpolatorPrototype
void SetInterpolatorTypeToCellLocator()
Set the velocity field interpolator type to the one involving a cell locator.
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
void CalculateVorticity(vtkGenericCell *cell, double pcoords[3], vtkDoubleArray *cellVectors, double vorticity[3])
double MinimumIntegrationStep
void SetIntegratorTypeToRungeKutta4()
Set/get the integrator type to be used for streamline generation.
static double ConvertToLength(double interval, int unit, double cellLength)
void SetIntegrator(vtkInitialValueProblemSolver *)
Set/get the integrator type to be used for streamline generation.
void SetSourceConnection(vtkAlgorithmOutput *algOutput)
Specify the source object used to generate starting points (seeds).
std::vector< int > CustomReasonForTermination
static double ConvertToLength(IntervalInformation &interval, double cellLength)
int CheckInputs(vtkAbstractInterpolatedVelocityField *&func, int *maxCellSize)
void ConvertIntervals(double &step, double &minStep, double &maxStep, int direction, double cellLength)
void GenerateNormals(vtkPolyData *output, double *firstNormal, const char *vecName)
static const double EPSILON
vtkIdType MaximumNumberOfSteps
void SetIntegrationDirectionToForward()
Specify whether the streamline is integrated in the upstream or downstream direction.
std::vector< CustomTerminationCallbackType > CustomTerminationCallback
static vtkStreamTracer * New()
Construct object to start from position (0,0,0), with forward integration, terminal speed 1....
bool HasMatchingPointAttributes
vtkCompositeDataSet * InputData
void SetInterpolatorType(int interpType)
Set the type of the velocity field interpolator to determine whether vtkInterpolatedVelocityField (IN...
double MaximumIntegrationStep
int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *) override
This is called by the superclass.
bool GenerateNormalsInIntegrate
vtkExecutive * CreateDefaultExecutive() override
Create a default executive.
void SetIntegrationDirectionToBackward()
Specify whether the streamline is integrated in the upstream or downstream direction.
void SetInterpolatorTypeToDataSetPointLocator()
Set the velocity field interpolator type to the one involving a dataset point locator.
int GetIntegratorType()
Set/get the integrator type to be used for streamline generation.
void AddCustomTerminationCallback(CustomTerminationCallbackType callback, void *clientdata, int reasonForTermination)
Adds a custom termination callback.
void InitializeSeeds(vtkDataArray *&seeds, vtkIdList *&seedIds, vtkIntArray *&integrationDirections, vtkDataSet *source)
void SetIntegratorTypeToRungeKutta2()
Set/get the integrator type to be used for streamline generation.
void SetIntegrationDirectionToBoth()
Specify whether the streamline is integrated in the upstream or downstream direction.
double SimpleIntegrate(double seed[3], double lastPoint[3], double stepSize, vtkAbstractInterpolatedVelocityField *func)
~vtkStreamTracer() override
void AddInput(vtkDataObject *)
vtkInitialValueProblemSolver * Integrator
void SetInterpolatorPrototype(vtkAbstractInterpolatedVelocityField *ivf)
The object used to interpolate the velocity field during integration is of the same class as this pro...
void SetIntegrationStepUnit(int unit)
Specify a uniform integration step unit for MinimumIntegrationStep, InitialIntegrationStep,...
void SetIntegratorType(int type)
Set/get the integrator type to be used for streamline generation.
int GetIntegrationStepUnit()
@ points
Definition: vtkX3D.h:452
@ direction
Definition: vtkX3D.h:266
@ type
Definition: vtkX3D.h:522
boost::graph_traits< vtkGraph * >::vertex_descriptor source(boost::graph_traits< vtkGraph * >::edge_descriptor e, vtkGraph *)
int vtkIdType
Definition: vtkType.h:332