VTK  9.1.0
vtkMath.h
Go to the documentation of this file.
1/*=========================================================================
2
3 Program: Visualization Toolkit
4 Module: vtkMath.h
5
6 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
7 All rights reserved.
8 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
9
10 This software is distributed WITHOUT ANY WARRANTY; without even
11 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
12 PURPOSE. See the above copyright notice for more information.
13
14=========================================================================
15 Copyright 2011 Sandia Corporation.
16 Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
17 license for use of this work by or on behalf of the
18 U.S. Government. Redistribution and use in source and binary forms, with
19 or without modification, are permitted provided that this Notice and any
20 statement of authorship are reproduced on all copies.
21
22 Contact: pppebay@sandia.gov,dcthomp@sandia.gov
23
24=========================================================================*/
148#ifndef vtkMath_h
149#define vtkMath_h
150
151#include "vtkCommonCoreModule.h" // For export macro
152#include "vtkMathPrivate.hxx" // For Matrix meta-class helpers
153#include "vtkMatrixUtilities.h" // For Matrix wrapping / mapping
154#include "vtkObject.h"
155#include "vtkSmartPointer.h" // For vtkSmartPointer.
156#include "vtkTypeTraits.h" // For type traits
157
158#include "vtkMathConfigure.h" // For <cmath> and VTK_HAS_ISNAN etc.
159
160#include <algorithm> // for std::clamp
161#include <cassert> // assert() in inline implementations.
162
163#ifndef DBL_MIN
164#define VTK_DBL_MIN 2.2250738585072014e-308
165#else // DBL_MIN
166#define VTK_DBL_MIN DBL_MIN
167#endif // DBL_MIN
168
169#ifndef DBL_EPSILON
170#define VTK_DBL_EPSILON 2.2204460492503131e-16
171#else // DBL_EPSILON
172#define VTK_DBL_EPSILON DBL_EPSILON
173#endif // DBL_EPSILON
174
175#ifndef VTK_DBL_EPSILON
176#ifndef DBL_EPSILON
177#define VTK_DBL_EPSILON 2.2204460492503131e-16
178#else // DBL_EPSILON
179#define VTK_DBL_EPSILON DBL_EPSILON
180#endif // DBL_EPSILON
181#endif // VTK_DBL_EPSILON
182
183class vtkDataArray;
184class vtkPoints;
185class vtkMathInternal;
188
189namespace vtk_detail
190{
191// forward declaration
192template <typename OutT>
193void RoundDoubleToIntegralIfNecessary(double val, OutT* ret);
194} // end namespace vtk_detail
195
196class VTKCOMMONCORE_EXPORT vtkMath : public vtkObject
197{
198public:
199 static vtkMath* New();
200 vtkTypeMacro(vtkMath, vtkObject);
201 void PrintSelf(ostream& os, vtkIndent indent) override;
202
206 static constexpr double Pi() { return 3.141592653589793; }
207
209
212 static float RadiansFromDegrees(float degrees);
213 static double RadiansFromDegrees(double degrees);
215
217
220 static float DegreesFromRadians(float radians);
221 static double DegreesFromRadians(double radians);
223
227#if 1
228 static int Round(float f) { return static_cast<int>(f + (f >= 0.0 ? 0.5 : -0.5)); }
229 static int Round(double f) { return static_cast<int>(f + (f >= 0.0 ? 0.5 : -0.5)); }
230#endif
231
236 template <typename OutT>
237 static void RoundDoubleToIntegralIfNecessary(double val, OutT* ret)
238 {
239 // Can't specialize template methods in a template class, so we move the
240 // implementations to a external namespace.
242 }
243
249 static int Floor(double x);
250
256 static int Ceil(double x);
257
263 static int CeilLog2(vtkTypeUInt64 x);
264
269 template <class T>
270 static T Min(const T& a, const T& b);
271
276 template <class T>
277 static T Max(const T& a, const T& b);
278
282 static bool IsPowerOfTwo(vtkTypeUInt64 x);
283
289 static int NearestPowerOfTwo(int x);
290
295 static vtkTypeInt64 Factorial(int N);
296
302 static vtkTypeInt64 Binomial(int m, int n);
303
315 static int* BeginCombination(int m, int n);
316
327 static int NextCombination(int m, int n, int* combination);
328
332 static void FreeCombination(int* combination);
333
349 static void RandomSeed(int s);
350
362 static int GetSeed();
363
377 static double Random();
378
391 static double Random(double min, double max);
392
405 static double Gaussian();
406
419 static double Gaussian(double mean, double std);
420
425 template <class VectorT1, class VectorT2>
426 static void Assign(const VectorT1& a, VectorT2&& b)
427 {
428 b[0] = a[0];
429 b[1] = a[1];
430 b[2] = a[2];
431 }
432
436 static void Assign(const double a[3], double b[3]) { vtkMath::Assign<>(a, b); }
437
441 static void Add(const float a[3], const float b[3], float c[3])
442 {
443 for (int i = 0; i < 3; ++i)
444 {
445 c[i] = a[i] + b[i];
446 }
447 }
448
452 static void Add(const double a[3], const double b[3], double c[3])
453 {
454 for (int i = 0; i < 3; ++i)
455 {
456 c[i] = a[i] + b[i];
457 }
458 }
459
463 static void Subtract(const float a[3], const float b[3], float c[3])
464 {
465 for (int i = 0; i < 3; ++i)
466 {
467 c[i] = a[i] - b[i];
468 }
469 }
470
474 static void Subtract(const double a[3], const double b[3], double c[3])
475 {
476 for (int i = 0; i < 3; ++i)
477 {
478 c[i] = a[i] - b[i];
479 }
480 }
481
487 template <class VectorT1, class VectorT2, class VectorT3>
488 static void Subtract(const VectorT1& a, const VectorT2& b, VectorT3&& c)
489 {
490 c[0] = a[0] - b[0];
491 c[1] = a[1] - b[1];
492 c[2] = a[2] - b[2];
493 }
494
499 static void MultiplyScalar(float a[3], float s)
500 {
501 for (int i = 0; i < 3; ++i)
502 {
503 a[i] *= s;
504 }
505 }
506
511 static void MultiplyScalar2D(float a[2], float s)
512 {
513 for (int i = 0; i < 2; ++i)
514 {
515 a[i] *= s;
516 }
517 }
518
523 static void MultiplyScalar(double a[3], double s)
524 {
525 for (int i = 0; i < 3; ++i)
526 {
527 a[i] *= s;
528 }
529 }
530
535 static void MultiplyScalar2D(double a[2], double s)
536 {
537 for (int i = 0; i < 2; ++i)
538 {
539 a[i] *= s;
540 }
541 }
542
546 static float Dot(const float a[3], const float b[3])
547 {
548 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
549 }
550
554 static double Dot(const double a[3], const double b[3])
555 {
556 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
557 }
558
574 template <typename ReturnTypeT = double, typename TupleRangeT1, typename TupleRangeT2,
575 typename EnableT = typename std::conditional<!std::is_pointer<TupleRangeT1>::value &&
577 TupleRangeT1, TupleRangeT2>::type::value_type>
578 static ReturnTypeT Dot(const TupleRangeT1& a, const TupleRangeT2& b)
579 {
580 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
581 }
582
586 static void Outer(const float a[3], const float b[3], float c[3][3])
587 {
588 for (int i = 0; i < 3; ++i)
589 {
590 for (int j = 0; j < 3; ++j)
591 {
592 c[i][j] = a[i] * b[j];
593 }
594 }
595 }
596
600 static void Outer(const double a[3], const double b[3], double c[3][3])
601 {
602 for (int i = 0; i < 3; ++i)
603 {
604 for (int j = 0; j < 3; ++j)
605 {
606 c[i][j] = a[i] * b[j];
607 }
608 }
609 }
610
615 static void Cross(const float a[3], const float b[3], float c[3]);
616
621 static void Cross(const double a[3], const double b[3], double c[3]);
622
624
627 static float Norm(const float* x, int n);
628 static double Norm(const double* x, int n);
630
634 static float Norm(const float v[3]) { return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); }
635
639 static double Norm(const double v[3])
640 {
641 return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
642 }
643
653 template <typename ReturnTypeT = double, typename TupleRangeT>
654 static ReturnTypeT SquaredNorm(const TupleRangeT& v)
655 {
656 return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
657 }
658
663 static float Normalize(float v[3]);
664
669 static double Normalize(double v[3]);
670
672
679 static void Perpendiculars(const double v1[3], double v2[3], double v3[3], double theta);
680 static void Perpendiculars(const float v1[3], float v2[3], float v3[3], double theta);
682
684
689 static bool ProjectVector(const float a[3], const float b[3], float projection[3]);
690 static bool ProjectVector(const double a[3], const double b[3], double projection[3]);
692
694
700 static bool ProjectVector2D(const float a[2], const float b[2], float projection[2]);
701 static bool ProjectVector2D(const double a[2], const double b[2], double projection[2]);
703
719 template <typename ReturnTypeT = double, typename TupleRangeT1, typename TupleRangeT2,
720 typename EnableT = typename std::conditional<!std::is_pointer<TupleRangeT1>::value &&
722 TupleRangeT1, TupleRangeT2>::type::value_type>
723 static ReturnTypeT Distance2BetweenPoints(const TupleRangeT1& p1, const TupleRangeT2& p2);
724
729 static float Distance2BetweenPoints(const float p1[3], const float p2[3]);
730
735 static double Distance2BetweenPoints(const double p1[3], const double p2[3]);
736
740 static double AngleBetweenVectors(const double v1[3], const double v2[3]);
741
746 const double v1[3], const double v2[3], const double vn[3]);
747
752 static double GaussianAmplitude(const double variance, const double distanceFromMean);
753
758 static double GaussianAmplitude(const double mean, const double variance, const double position);
759
765 static double GaussianWeight(const double variance, const double distanceFromMean);
766
772 static double GaussianWeight(const double mean, const double variance, const double position);
773
777 static float Dot2D(const float x[2], const float y[2]) { return x[0] * y[0] + x[1] * y[1]; }
778
782 static double Dot2D(const double x[2], const double y[2]) { return x[0] * y[0] + x[1] * y[1]; }
783
787 static void Outer2D(const float x[2], const float y[2], float A[2][2])
788 {
789 for (int i = 0; i < 2; ++i)
790 {
791 for (int j = 0; j < 2; ++j)
792 {
793 A[i][j] = x[i] * y[j];
794 }
795 }
796 }
797
801 static void Outer2D(const double x[2], const double y[2], double A[2][2])
802 {
803 for (int i = 0; i < 2; ++i)
804 {
805 for (int j = 0; j < 2; ++j)
806 {
807 A[i][j] = x[i] * y[j];
808 }
809 }
810 }
811
816 static float Norm2D(const float x[2]) { return std::sqrt(x[0] * x[0] + x[1] * x[1]); }
817
822 static double Norm2D(const double x[2]) { return std::sqrt(x[0] * x[0] + x[1] * x[1]); }
823
828 static float Normalize2D(float v[2]);
829
834 static double Normalize2D(double v[2]);
835
839 static float Determinant2x2(const float c1[2], const float c2[2])
840 {
841 return c1[0] * c2[1] - c2[0] * c1[1];
842 }
843
845
848 static double Determinant2x2(double a, double b, double c, double d) { return a * d - b * c; }
849 static double Determinant2x2(const double c1[2], const double c2[2])
850 {
851 return c1[0] * c2[1] - c2[0] * c1[1];
852 }
854
856
859 static void LUFactor3x3(float A[3][3], int index[3]);
860 static void LUFactor3x3(double A[3][3], int index[3]);
862
864
867 static void LUSolve3x3(const float A[3][3], const int index[3], float x[3]);
868 static void LUSolve3x3(const double A[3][3], const int index[3], double x[3]);
870
872
876 static void LinearSolve3x3(const float A[3][3], const float x[3], float y[3]);
877 static void LinearSolve3x3(const double A[3][3], const double x[3], double y[3]);
879
881
884 static void Multiply3x3(const float A[3][3], const float v[3], float u[3]);
885 static void Multiply3x3(const double A[3][3], const double v[3], double u[3]);
887
889
892 static void Multiply3x3(const float A[3][3], const float B[3][3], float C[3][3]);
893 static void Multiply3x3(const double A[3][3], const double B[3][3], double C[3][3]);
895
919 template <int RowsT, int MidDimT, int ColsT,
920 class LayoutT1 = vtkMatrixUtilities::Layout::Identity,
921 class LayoutT2 = vtkMatrixUtilities::Layout::Identity, class MatrixT1, class MatrixT2,
922 class MatrixT3>
923 static void MultiplyMatrix(const MatrixT1& M1, const MatrixT2& M2, MatrixT3&& M3)
924 {
925 vtkMathPrivate::MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2>::Compute(M1, M2, M3);
926 }
927
948 template <int RowsT, int ColsT, class LayoutT = vtkMatrixUtilities::Layout::Identity,
949 class MatrixT, class VectorT1, class VectorT2>
950 static void MultiplyMatrixWithVector(const MatrixT& M, const VectorT1& X, VectorT2&& Y)
951 {
952 vtkMathPrivate::MultiplyMatrix<RowsT, ColsT, 1, LayoutT>::Compute(M, X, Y);
953 }
954
960 template <class ScalarT, int SizeT, class VectorT1, class VectorT2>
961 static ScalarT Dot(const VectorT1& x, const VectorT2& y)
962 {
963 return vtkMathPrivate::ContractRowWithCol<ScalarT, 1, SizeT, 1, 0, 0,
964 vtkMatrixUtilities::Layout::Identity, vtkMatrixUtilities::Layout::Transpose>::Compute(x, y);
965 }
966
983 template <int SizeT, class LayoutT = vtkMatrixUtilities::Layout::Identity, class MatrixT>
985 const MatrixT& M)
986 {
987 return vtkMathPrivate::Determinant<SizeT, LayoutT>::Compute(M);
988 }
989
1005 template <int SizeT, class LayoutT = vtkMatrixUtilities::Layout::Identity, class MatrixT1,
1006 class MatrixT2>
1007 static void InvertMatrix(const MatrixT1& M1, MatrixT2&& M2)
1008 {
1009 vtkMathPrivate::InvertMatrix<SizeT, LayoutT>::Compute(M1, M2);
1010 }
1011
1025 template <int RowsT, int ColsT, class LayoutT = vtkMatrixUtilities::Layout::Identity,
1026 class MatrixT, class VectorT1, class VectorT2>
1027 static void LinearSolve(const MatrixT& M, const VectorT1& x, VectorT2& y)
1028 {
1029 vtkMathPrivate::LinearSolve<RowsT, ColsT, LayoutT>::Compute(M, x, y);
1030 }
1031
1046 template <class ScalarT, int SizeT, class LayoutT = vtkMatrixUtilities::Layout::Identity,
1047 class VectorT1, class MatrixT, class VectorT2>
1048 static ScalarT Dot(const VectorT1& x, const MatrixT& M, const VectorT2& y)
1049 {
1050 ScalarT tmp[SizeT];
1051 vtkMathPrivate::MultiplyMatrix<SizeT, SizeT, 1, LayoutT>::Compute(M, y, tmp);
1052 return vtkMathPrivate::ContractRowWithCol<ScalarT, 1, SizeT, 1, 0, 0,
1053 vtkMatrixUtilities::Layout::Identity, vtkMatrixUtilities::Layout::Transpose>::Compute(x, tmp);
1054 }
1055
1061 static void MultiplyMatrix(const double* const* A, const double* const* B, unsigned int rowA,
1062 unsigned int colA, unsigned int rowB, unsigned int colB, double** C);
1063
1065
1069 static void Transpose3x3(const float A[3][3], float AT[3][3]);
1070 static void Transpose3x3(const double A[3][3], double AT[3][3]);
1072
1074
1078 static void Invert3x3(const float A[3][3], float AI[3][3]);
1079 static void Invert3x3(const double A[3][3], double AI[3][3]);
1081
1083
1086 static void Identity3x3(float A[3][3]);
1087 static void Identity3x3(double A[3][3]);
1089
1091
1094 static double Determinant3x3(const float A[3][3]);
1095 static double Determinant3x3(const double A[3][3]);
1097
1101 static float Determinant3x3(const float c1[3], const float c2[3], const float c3[3]);
1102
1106 static double Determinant3x3(const double c1[3], const double c2[3], const double c3[3]);
1107
1114 static double Determinant3x3(double a1, double a2, double a3, double b1, double b2, double b3,
1115 double c1, double c2, double c3);
1116
1118
1125 static void QuaternionToMatrix3x3(const float quat[4], float A[3][3]);
1126 static void QuaternionToMatrix3x3(const double quat[4], double A[3][3]);
1127 template <class QuaternionT, class MatrixT,
1128 class EnableT = typename std::enable_if<!vtkMatrixUtilities::MatrixIs2DArray<MatrixT>()>::type>
1129 static void QuaternionToMatrix3x3(const QuaternionT& q, MatrixT&& A);
1131
1133
1142 static void Matrix3x3ToQuaternion(const float A[3][3], float quat[4]);
1143 static void Matrix3x3ToQuaternion(const double A[3][3], double quat[4]);
1144 template <class MatrixT, class QuaternionT,
1145 class EnableT = typename std::enable_if<!vtkMatrixUtilities::MatrixIs2DArray<MatrixT>()>::type>
1146 static void Matrix3x3ToQuaternion(const MatrixT& A, QuaternionT&& q);
1148
1150
1156 static void MultiplyQuaternion(const float q1[4], const float q2[4], float q[4]);
1157 static void MultiplyQuaternion(const double q1[4], const double q2[4], double q[4]);
1159
1161
1165 static void RotateVectorByNormalizedQuaternion(const float v[3], const float q[4], float r[3]);
1166 static void RotateVectorByNormalizedQuaternion(const double v[3], const double q[4], double r[3]);
1168
1170
1174 static void RotateVectorByWXYZ(const float v[3], const float q[4], float r[3]);
1175 static void RotateVectorByWXYZ(const double v[3], const double q[4], double r[3]);
1177
1179
1184 static void Orthogonalize3x3(const float A[3][3], float B[3][3]);
1185 static void Orthogonalize3x3(const double A[3][3], double B[3][3]);
1187
1189
1195 static void Diagonalize3x3(const float A[3][3], float w[3], float V[3][3]);
1196 static void Diagonalize3x3(const double A[3][3], double w[3], double V[3][3]);
1198
1200
1210 const float A[3][3], float U[3][3], float w[3], float VT[3][3]);
1212 const double A[3][3], double U[3][3], double w[3], double VT[3][3]);
1214
1223 double a00, double a01, double a10, double a11, double b0, double b1, double& x0, double& x1);
1224
1233 static vtkTypeBool SolveLinearSystem(double** A, double* x, int size);
1234
1241 static vtkTypeBool InvertMatrix(double** A, double** AI, int size);
1242
1249 double** A, double** AI, int size, int* tmp1Size, double* tmp2Size);
1250
1273 static vtkTypeBool LUFactorLinearSystem(double** A, int* index, int size);
1274
1280 static vtkTypeBool LUFactorLinearSystem(double** A, int* index, int size, double* tmpSize);
1281
1290 static void LUSolveLinearSystem(double** A, int* index, double* x, int size);
1291
1300 static double EstimateMatrixCondition(const double* const* A, int size);
1301
1303
1311 static vtkTypeBool Jacobi(float** a, float* w, float** v);
1312 static vtkTypeBool Jacobi(double** a, double* w, double** v);
1314
1316
1325 static vtkTypeBool JacobiN(float** a, int n, float* w, float** v);
1326 static vtkTypeBool JacobiN(double** a, int n, double* w, double** v);
1328
1343 int numberOfSamples, double** xt, int xOrder, double** mt);
1344
1359 static vtkTypeBool SolveLeastSquares(int numberOfSamples, double** xt, int xOrder, double** yt,
1360 int yOrder, double** mt, int checkHomogeneous = 1);
1361
1363
1370 static void RGBToHSV(const float rgb[3], float hsv[3])
1371 {
1372 RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv + 1, hsv + 2);
1373 }
1374 static void RGBToHSV(float r, float g, float b, float* h, float* s, float* v);
1375 static void RGBToHSV(const double rgb[3], double hsv[3])
1376 {
1377 RGBToHSV(rgb[0], rgb[1], rgb[2], hsv, hsv + 1, hsv + 2);
1378 }
1379 static void RGBToHSV(double r, double g, double b, double* h, double* s, double* v);
1381
1383
1390 static void HSVToRGB(const float hsv[3], float rgb[3])
1391 {
1392 HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb + 1, rgb + 2);
1393 }
1394 static void HSVToRGB(float h, float s, float v, float* r, float* g, float* b);
1395 static void HSVToRGB(const double hsv[3], double rgb[3])
1396 {
1397 HSVToRGB(hsv[0], hsv[1], hsv[2], rgb, rgb + 1, rgb + 2);
1398 }
1399 static void HSVToRGB(double h, double s, double v, double* r, double* g, double* b);
1401
1403
1406 static void LabToXYZ(const double lab[3], double xyz[3])
1407 {
1408 LabToXYZ(lab[0], lab[1], lab[2], xyz + 0, xyz + 1, xyz + 2);
1409 }
1410 static void LabToXYZ(double L, double a, double b, double* x, double* y, double* z);
1412
1414
1417 static void XYZToLab(const double xyz[3], double lab[3])
1418 {
1419 XYZToLab(xyz[0], xyz[1], xyz[2], lab + 0, lab + 1, lab + 2);
1420 }
1421 static void XYZToLab(double x, double y, double z, double* L, double* a, double* b);
1423
1425
1428 static void XYZToRGB(const double xyz[3], double rgb[3])
1429 {
1430 XYZToRGB(xyz[0], xyz[1], xyz[2], rgb + 0, rgb + 1, rgb + 2);
1431 }
1432 static void XYZToRGB(double x, double y, double z, double* r, double* g, double* b);
1434
1436
1439 static void RGBToXYZ(const double rgb[3], double xyz[3])
1440 {
1441 RGBToXYZ(rgb[0], rgb[1], rgb[2], xyz + 0, xyz + 1, xyz + 2);
1442 }
1443 static void RGBToXYZ(double r, double g, double b, double* x, double* y, double* z);
1445
1447
1453 static void RGBToLab(const double rgb[3], double lab[3])
1454 {
1455 RGBToLab(rgb[0], rgb[1], rgb[2], lab + 0, lab + 1, lab + 2);
1456 }
1457 static void RGBToLab(double red, double green, double blue, double* L, double* a, double* b);
1459
1461
1464 static void LabToRGB(const double lab[3], double rgb[3])
1465 {
1466 LabToRGB(lab[0], lab[1], lab[2], rgb + 0, rgb + 1, rgb + 2);
1467 }
1468 static void LabToRGB(double L, double a, double b, double* red, double* green, double* blue);
1470
1472
1475 static void UninitializeBounds(double bounds[6])
1476 {
1477 bounds[0] = 1.0;
1478 bounds[1] = -1.0;
1479 bounds[2] = 1.0;
1480 bounds[3] = -1.0;
1481 bounds[4] = 1.0;
1482 bounds[5] = -1.0;
1483 }
1485
1487
1490 static vtkTypeBool AreBoundsInitialized(const double bounds[6])
1491 {
1492 if (bounds[1] - bounds[0] < 0.0)
1493 {
1494 return 0;
1495 }
1496 return 1;
1497 }
1499
1504 template <class T>
1505 static T ClampValue(const T& value, const T& min, const T& max);
1506
1508
1512 static void ClampValue(double* value, const double range[2]);
1513 static void ClampValue(double value, const double range[2], double* clamped_value);
1514 static void ClampValues(double* values, int nb_values, const double range[2]);
1515 static void ClampValues(
1516 const double* values, int nb_values, const double range[2], double* clamped_values);
1518
1525 static double ClampAndNormalizeValue(double value, const double range[2]);
1526
1531 template <class T1, class T2>
1532 static void TensorFromSymmetricTensor(const T1 symmTensor[6], T2 tensor[9]);
1533
1539 template <class T>
1540 static void TensorFromSymmetricTensor(T tensor[9]);
1541
1551 double range_min, double range_max, double scale = 1.0, double shift = 0.0);
1552
1561 static vtkTypeBool GetAdjustedScalarRange(vtkDataArray* array, int comp, double range[2]);
1562
1567 static vtkTypeBool ExtentIsWithinOtherExtent(const int extent1[6], const int extent2[6]);
1568
1575 const double bounds1[6], const double bounds2[6], const double delta[3]);
1576
1583 const double point[3], const double bounds[6], const double delta[3]);
1584
1595 const double bounds[6], const double normal[3], const double point[3]);
1596
1606 static double Solve3PointCircle(
1607 const double p1[3], const double p2[3], const double p3[3], double center[3]);
1608
1612 static double Inf();
1613
1617 static double NegInf();
1618
1622 static double Nan();
1623
1627 static vtkTypeBool IsInf(double x);
1628
1632 static vtkTypeBool IsNan(double x);
1633
1638 static bool IsFinite(double x);
1639
1644 static int QuadraticRoot(double a, double b, double c, double min, double max, double* u);
1645
1646protected:
1647 vtkMath() = default;
1648 ~vtkMath() override = default;
1649
1651
1652private:
1653 vtkMath(const vtkMath&) = delete;
1654 void operator=(const vtkMath&) = delete;
1655};
1656
1657//----------------------------------------------------------------------------
1658inline float vtkMath::RadiansFromDegrees(float x)
1659{
1660 return x * 0.017453292f;
1661}
1662
1663//----------------------------------------------------------------------------
1664inline double vtkMath::RadiansFromDegrees(double x)
1665{
1666 return x * 0.017453292519943295;
1667}
1668
1669//----------------------------------------------------------------------------
1670inline float vtkMath::DegreesFromRadians(float x)
1671{
1672 return x * 57.2957795131f;
1673}
1674
1675//----------------------------------------------------------------------------
1676inline double vtkMath::DegreesFromRadians(double x)
1677{
1678 return x * 57.29577951308232;
1679}
1680
1681//----------------------------------------------------------------------------
1682inline bool vtkMath::IsPowerOfTwo(vtkTypeUInt64 x)
1683{
1684 return ((x != 0) & ((x & (x - 1)) == 0));
1685}
1686
1687//----------------------------------------------------------------------------
1688// Credit goes to Peter Hart and William Lewis on comp.lang.python 1997
1690{
1691 unsigned int z = static_cast<unsigned int>(((x > 0) ? x - 1 : 0));
1692 z |= z >> 1;
1693 z |= z >> 2;
1694 z |= z >> 4;
1695 z |= z >> 8;
1696 z |= z >> 16;
1697 return static_cast<int>(z + 1);
1698}
1699
1700//----------------------------------------------------------------------------
1701// Modify the trunc() operation provided by static_cast<int>() to get floor(),
1702// Note that in C++ conditions evaluate to values of 1 or 0 (true or false).
1703inline int vtkMath::Floor(double x)
1704{
1705 int i = static_cast<int>(x);
1706 return i - (i > x);
1707}
1708
1709//----------------------------------------------------------------------------
1710// Modify the trunc() operation provided by static_cast<int>() to get ceil(),
1711// Note that in C++ conditions evaluate to values of 1 or 0 (true or false).
1712inline int vtkMath::Ceil(double x)
1713{
1714 int i = static_cast<int>(x);
1715 return i + (i < x);
1716}
1717
1718//----------------------------------------------------------------------------
1719template <class T>
1720inline T vtkMath::Min(const T& a, const T& b)
1721{
1722 return (b <= a ? b : a);
1723}
1724
1725//----------------------------------------------------------------------------
1726template <class T>
1727inline T vtkMath::Max(const T& a, const T& b)
1728{
1729 return (b > a ? b : a);
1730}
1731
1732//----------------------------------------------------------------------------
1733inline float vtkMath::Normalize(float v[3])
1734{
1735 float den = vtkMath::Norm(v);
1736 if (den != 0.0)
1737 {
1738 for (int i = 0; i < 3; ++i)
1739 {
1740 v[i] /= den;
1741 }
1742 }
1743 return den;
1744}
1745
1746//----------------------------------------------------------------------------
1747inline double vtkMath::Normalize(double v[3])
1748{
1749 double den = vtkMath::Norm(v);
1750 if (den != 0.0)
1751 {
1752 for (int i = 0; i < 3; ++i)
1753 {
1754 v[i] /= den;
1755 }
1756 }
1757 return den;
1758}
1759
1760//----------------------------------------------------------------------------
1761inline float vtkMath::Normalize2D(float v[2])
1762{
1763 float den = vtkMath::Norm2D(v);
1764 if (den != 0.0)
1765 {
1766 for (int i = 0; i < 2; ++i)
1767 {
1768 v[i] /= den;
1769 }
1770 }
1771 return den;
1772}
1773
1774//----------------------------------------------------------------------------
1775inline double vtkMath::Normalize2D(double v[2])
1776{
1777 double den = vtkMath::Norm2D(v);
1778 if (den != 0.0)
1779 {
1780 for (int i = 0; i < 2; ++i)
1781 {
1782 v[i] /= den;
1783 }
1784 }
1785 return den;
1786}
1787
1788//----------------------------------------------------------------------------
1789inline float vtkMath::Determinant3x3(const float c1[3], const float c2[3], const float c3[3])
1790{
1791 return c1[0] * c2[1] * c3[2] + c2[0] * c3[1] * c1[2] + c3[0] * c1[1] * c2[2] -
1792 c1[0] * c3[1] * c2[2] - c2[0] * c1[1] * c3[2] - c3[0] * c2[1] * c1[2];
1793}
1794
1795//----------------------------------------------------------------------------
1796inline double vtkMath::Determinant3x3(const double c1[3], const double c2[3], const double c3[3])
1797{
1798 return c1[0] * c2[1] * c3[2] + c2[0] * c3[1] * c1[2] + c3[0] * c1[1] * c2[2] -
1799 c1[0] * c3[1] * c2[2] - c2[0] * c1[1] * c3[2] - c3[0] * c2[1] * c1[2];
1800}
1801
1802//----------------------------------------------------------------------------
1804 double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3)
1805{
1806 return (a1 * vtkMath::Determinant2x2(b2, b3, c2, c3) -
1807 b1 * vtkMath::Determinant2x2(a2, a3, c2, c3) + c1 * vtkMath::Determinant2x2(a2, a3, b2, b3));
1808}
1809
1810//----------------------------------------------------------------------------
1811inline float vtkMath::Distance2BetweenPoints(const float p1[3], const float p2[3])
1812{
1813 return ((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) +
1814 (p1[2] - p2[2]) * (p1[2] - p2[2]));
1815}
1816
1817//----------------------------------------------------------------------------
1818inline double vtkMath::Distance2BetweenPoints(const double p1[3], const double p2[3])
1819{
1820 return ((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) +
1821 (p1[2] - p2[2]) * (p1[2] - p2[2]));
1822}
1823
1824//----------------------------------------------------------------------------
1825template <typename ReturnTypeT, typename TupleRangeT1, typename TupleRangeT2, typename EnableT>
1826inline ReturnTypeT vtkMath::Distance2BetweenPoints(const TupleRangeT1& p1, const TupleRangeT2& p2)
1827{
1828 return ((p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) +
1829 (p1[2] - p2[2]) * (p1[2] - p2[2]));
1830}
1831
1832//----------------------------------------------------------------------------
1833// Cross product of two 3-vectors. Result (a x b) is stored in c[3].
1834inline void vtkMath::Cross(const float a[3], const float b[3], float c[3])
1835{
1836 float Cx = a[1] * b[2] - a[2] * b[1];
1837 float Cy = a[2] * b[0] - a[0] * b[2];
1838 float Cz = a[0] * b[1] - a[1] * b[0];
1839 c[0] = Cx;
1840 c[1] = Cy;
1841 c[2] = Cz;
1842}
1843
1844//----------------------------------------------------------------------------
1845// Cross product of two 3-vectors. Result (a x b) is stored in c[3].
1846inline void vtkMath::Cross(const double a[3], const double b[3], double c[3])
1847{
1848 double Cx = a[1] * b[2] - a[2] * b[1];
1849 double Cy = a[2] * b[0] - a[0] * b[2];
1850 double Cz = a[0] * b[1] - a[1] * b[0];
1851 c[0] = Cx;
1852 c[1] = Cy;
1853 c[2] = Cz;
1854}
1855
1856//----------------------------------------------------------------------------
1857template <class T>
1858inline double vtkDeterminant3x3(const T A[3][3])
1859{
1860 return A[0][0] * A[1][1] * A[2][2] + A[1][0] * A[2][1] * A[0][2] + A[2][0] * A[0][1] * A[1][2] -
1861 A[0][0] * A[2][1] * A[1][2] - A[1][0] * A[0][1] * A[2][2] - A[2][0] * A[1][1] * A[0][2];
1862}
1863
1864//----------------------------------------------------------------------------
1865inline double vtkMath::Determinant3x3(const float A[3][3])
1866{
1867 return vtkDeterminant3x3(A);
1868}
1869
1870//----------------------------------------------------------------------------
1871inline double vtkMath::Determinant3x3(const double A[3][3])
1872{
1873 return vtkDeterminant3x3(A);
1874}
1875
1876//----------------------------------------------------------------------------
1877template <class T>
1878inline T vtkMath::ClampValue(const T& value, const T& min, const T& max)
1879{
1880 assert("pre: valid_range" && min <= max);
1881
1882#if __cplusplus >= 201703L
1883 return std::clamp(value, min, max);
1884#else
1885 // compilers are good at optimizing the ternary operator,
1886 // use '<' since it is preferred by STL for custom types
1887 T v = (min < value ? value : min);
1888 return (v < max ? v : max);
1889#endif
1890}
1891
1892//----------------------------------------------------------------------------
1893inline void vtkMath::ClampValue(double* value, const double range[2])
1894{
1895 if (value && range)
1896 {
1897 assert("pre: valid_range" && range[0] <= range[1]);
1898
1900 }
1901}
1902
1903//----------------------------------------------------------------------------
1904inline void vtkMath::ClampValue(double value, const double range[2], double* clamped_value)
1905{
1906 if (range && clamped_value)
1907 {
1908 assert("pre: valid_range" && range[0] <= range[1]);
1909
1910 *clamped_value = vtkMath::ClampValue(value, range[0], range[1]);
1911 }
1912}
1913
1914// ---------------------------------------------------------------------------
1915inline double vtkMath::ClampAndNormalizeValue(double value, const double range[2])
1916{
1917 assert("pre: valid_range" && range[0] <= range[1]);
1918
1919 double result;
1920 if (range[0] == range[1])
1921 {
1922 result = 0.0;
1923 }
1924 else
1925 {
1926 // clamp
1927 result = vtkMath::ClampValue(value, range[0], range[1]);
1928
1929 // normalize
1930 result = (result - range[0]) / (range[1] - range[0]);
1931 }
1932
1933 assert("post: valid_result" && result >= 0.0 && result <= 1.0);
1934
1935 return result;
1936}
1937
1938//-----------------------------------------------------------------------------
1939template <class T1, class T2>
1940inline void vtkMath::TensorFromSymmetricTensor(const T1 symmTensor[9], T2 tensor[9])
1941{
1942 for (int i = 0; i < 3; ++i)
1943 {
1944 tensor[4 * i] = symmTensor[i];
1945 }
1946 tensor[1] = tensor[3] = symmTensor[3];
1947 tensor[2] = tensor[6] = symmTensor[5];
1948 tensor[5] = tensor[7] = symmTensor[4];
1949}
1950
1951//-----------------------------------------------------------------------------
1952template <class T>
1954{
1955 tensor[6] = tensor[5]; // XZ
1956 tensor[7] = tensor[4]; // YZ
1957 tensor[8] = tensor[2]; // ZZ
1958 tensor[4] = tensor[1]; // YY
1959 tensor[5] = tensor[7]; // YZ
1960 tensor[2] = tensor[6]; // XZ
1961 tensor[1] = tensor[3]; // XY
1962}
1963
1964namespace
1965{
1966template <class QuaternionT, class MatrixT>
1967inline void vtkQuaternionToMatrix3x3(const QuaternionT& quat, MatrixT& A)
1968{
1970
1971 Scalar ww = quat[0] * quat[0];
1972 Scalar wx = quat[0] * quat[1];
1973 Scalar wy = quat[0] * quat[2];
1974 Scalar wz = quat[0] * quat[3];
1975
1976 Scalar xx = quat[1] * quat[1];
1977 Scalar yy = quat[2] * quat[2];
1978 Scalar zz = quat[3] * quat[3];
1979
1980 Scalar xy = quat[1] * quat[2];
1981 Scalar xz = quat[1] * quat[3];
1982 Scalar yz = quat[2] * quat[3];
1983
1984 Scalar rr = xx + yy + zz;
1985 // normalization factor, just in case quaternion was not normalized
1986 Scalar f = 1 / (ww + rr);
1987 Scalar s = (ww - rr) * f;
1988 f *= 2;
1989
1991
1992 Wrapper::template Get<0, 0>(A) = xx * f + s;
1993 Wrapper::template Get<1, 0>(A) = (xy + wz) * f;
1994 Wrapper::template Get<2, 0>(A) = (xz - wy) * f;
1995
1996 Wrapper::template Get<0, 1>(A) = (xy - wz) * f;
1997 Wrapper::template Get<1, 1>(A) = yy * f + s;
1998 Wrapper::template Get<2, 1>(A) = (yz + wx) * f;
1999
2000 Wrapper::template Get<0, 2>(A) = (xz + wy) * f;
2001 Wrapper::template Get<1, 2>(A) = (yz - wx) * f;
2002 Wrapper::template Get<2, 2>(A) = zz * f + s;
2003}
2004} // anonymous namespace
2005
2006//------------------------------------------------------------------------------
2007inline void vtkMath::QuaternionToMatrix3x3(const float quat[4], float A[3][3])
2008{
2009 vtkQuaternionToMatrix3x3(quat, A);
2010}
2011
2012//------------------------------------------------------------------------------
2013inline void vtkMath::QuaternionToMatrix3x3(const double quat[4], double A[3][3])
2014{
2015 vtkQuaternionToMatrix3x3(quat, A);
2016}
2017
2018//-----------------------------------------------------------------------------
2019template <class QuaternionT, class MatrixT, class EnableT>
2020inline void vtkMath::QuaternionToMatrix3x3(const QuaternionT& q, MatrixT&& A)
2021{
2022 vtkQuaternionToMatrix3x3(q, A);
2023}
2024
2025namespace
2026{
2027//------------------------------------------------------------------------------
2028// The solution is based on
2029// Berthold K. P. Horn (1987),
2030// "Closed-form solution of absolute orientation using unit quaternions,"
2031// Journal of the Optical Society of America A, 4:629-642
2032template <class MatrixT, class QuaternionT>
2033inline void vtkMatrix3x3ToQuaternion(const MatrixT& A, QuaternionT& quat)
2034{
2036
2037 Scalar N[4][4];
2038
2040
2041 // on-diagonal elements
2042 N[0][0] = Wrapper::template Get<0, 0>(A) + Wrapper::template Get<1, 1>(A) +
2043 Wrapper::template Get<2, 2>(A);
2044 N[1][1] = Wrapper::template Get<0, 0>(A) - Wrapper::template Get<1, 1>(A) -
2045 Wrapper::template Get<2, 2>(A);
2046 N[2][2] = -Wrapper::template Get<0, 0>(A) + Wrapper::template Get<1, 1>(A) -
2047 Wrapper::template Get<2, 2>(A);
2048 N[3][3] = -Wrapper::template Get<0, 0>(A) - Wrapper::template Get<1, 1>(A) +
2049 Wrapper::template Get<2, 2>(A);
2050
2051 // off-diagonal elements
2052 N[0][1] = N[1][0] = Wrapper::template Get<2, 1>(A) - Wrapper::template Get<1, 2>(A);
2053 N[0][2] = N[2][0] = Wrapper::template Get<0, 2>(A) - Wrapper::template Get<2, 0>(A);
2054 N[0][3] = N[3][0] = Wrapper::template Get<1, 0>(A) - Wrapper::template Get<0, 1>(A);
2055
2056 N[1][2] = N[2][1] = Wrapper::template Get<1, 0>(A) + Wrapper::template Get<0, 1>(A);
2057 N[1][3] = N[3][1] = Wrapper::template Get<0, 2>(A) + Wrapper::template Get<2, 0>(A);
2058 N[2][3] = N[3][2] = Wrapper::template Get<2, 1>(A) + Wrapper::template Get<1, 2>(A);
2059
2060 Scalar eigenvectors[4][4], eigenvalues[4];
2061
2062 // convert into format that JacobiN can use,
2063 // then use Jacobi to find eigenvalues and eigenvectors
2064 Scalar *NTemp[4], *eigenvectorsTemp[4];
2065 for (int i = 0; i < 4; ++i)
2066 {
2067 NTemp[i] = N[i];
2068 eigenvectorsTemp[i] = eigenvectors[i];
2069 }
2070 vtkMath::JacobiN(NTemp, 4, eigenvalues, eigenvectorsTemp);
2071
2072 // the first eigenvector is the one we want
2073 quat[0] = eigenvectors[0][0];
2074 quat[1] = eigenvectors[1][0];
2075 quat[2] = eigenvectors[2][0];
2076 quat[3] = eigenvectors[3][0];
2077}
2078} // anonymous namespace
2079
2080//------------------------------------------------------------------------------
2081inline void vtkMath::Matrix3x3ToQuaternion(const float A[3][3], float quat[4])
2082{
2083 vtkMatrix3x3ToQuaternion(A, quat);
2084}
2085
2086//------------------------------------------------------------------------------
2087inline void vtkMath::Matrix3x3ToQuaternion(const double A[3][3], double quat[4])
2088{
2089 vtkMatrix3x3ToQuaternion(A, quat);
2090}
2091
2092//-----------------------------------------------------------------------------
2093template <class MatrixT, class QuaternionT, class EnableT>
2094inline void vtkMath::Matrix3x3ToQuaternion(const MatrixT& A, QuaternionT&& q)
2095{
2096 vtkMatrix3x3ToQuaternion(A, q);
2097}
2098
2099namespace vtk_detail
2100{
2101// Can't specialize templates inside a template class, so we move the impl here.
2102template <typename OutT>
2103void RoundDoubleToIntegralIfNecessary(double val, OutT* ret)
2104{ // OutT is integral -- clamp and round
2105 if (!vtkMath::IsNan(val))
2106 {
2107 double min = static_cast<double>(vtkTypeTraits<OutT>::Min());
2108 double max = static_cast<double>(vtkTypeTraits<OutT>::Max());
2109 val = vtkMath::ClampValue(val, min, max);
2110 *ret = static_cast<OutT>((val >= 0.0) ? (val + 0.5) : (val - 0.5));
2111 }
2112 else
2113 *ret = 0;
2114}
2115template <>
2116inline void RoundDoubleToIntegralIfNecessary(double val, double* retVal)
2117{ // OutT is double: passthrough
2118 *retVal = val;
2119}
2120template <>
2121inline void RoundDoubleToIntegralIfNecessary(double val, float* retVal)
2122{ // OutT is float -- just clamp (as doubles, then the cast to float is well-defined.)
2123 if (!vtkMath::IsNan(val))
2124 {
2125 double min = static_cast<double>(vtkTypeTraits<float>::Min());
2126 double max = static_cast<double>(vtkTypeTraits<float>::Max());
2127 val = vtkMath::ClampValue(val, min, max);
2128 }
2129
2130 *retVal = static_cast<float>(val);
2131}
2132} // end namespace vtk_detail
2133
2134//-----------------------------------------------------------------------------
2135#if defined(VTK_HAS_ISINF) || defined(VTK_HAS_STD_ISINF)
2136#define VTK_MATH_ISINF_IS_INLINE
2137inline vtkTypeBool vtkMath::IsInf(double x)
2138{
2139#if defined(VTK_HAS_STD_ISINF)
2140 return std::isinf(x);
2141#else
2142 return (isinf(x) != 0); // Force conversion to bool
2143#endif
2144}
2145#endif
2146
2147//-----------------------------------------------------------------------------
2148#if defined(VTK_HAS_ISNAN) || defined(VTK_HAS_STD_ISNAN)
2149#define VTK_MATH_ISNAN_IS_INLINE
2150inline vtkTypeBool vtkMath::IsNan(double x)
2151{
2152#if defined(VTK_HAS_STD_ISNAN)
2153 return std::isnan(x);
2154#else
2155 return (isnan(x) != 0); // Force conversion to bool
2156#endif
2157}
2158#endif
2159
2160//-----------------------------------------------------------------------------
2161#if defined(VTK_HAS_ISFINITE) || defined(VTK_HAS_STD_ISFINITE) || defined(VTK_HAS_FINITE)
2162#define VTK_MATH_ISFINITE_IS_INLINE
2163inline bool vtkMath::IsFinite(double x)
2164{
2165#if defined(VTK_HAS_STD_ISFINITE)
2166 return std::isfinite(x);
2167#elif defined(VTK_HAS_ISFINITE)
2168 return (isfinite(x) != 0); // Force conversion to bool
2169#else
2170 return (finite(x) != 0); // Force conversion to bool
2171#endif
2172}
2173#endif
2174
2175#endif
Gaussian sequence of pseudo random numbers implemented with the Box-Mueller transform.
abstract superclass for arrays of numeric data
Definition: vtkDataArray.h:159
vtkFrustumSelector is a vtkSelector that selects elements based on whether they are inside or interse...
a simple class to control print indentation
Definition: vtkIndent.h:113
performs common math operations
Definition: vtkMath.h:197
static ReturnTypeT Distance2BetweenPoints(const TupleRangeT1 &p1, const TupleRangeT2 &p2)
Compute distance squared between two points p1 and p2.
Definition: vtkMath.h:1826
static void Multiply3x3(const float A[3][3], const float B[3][3], float C[3][3])
Multiply one 3x3 matrix by another according to C = AB.
static double Dot(const double a[3], const double b[3])
Dot product of two 3-vectors (double version).
Definition: vtkMath.h:554
static int GetScalarTypeFittingRange(double range_min, double range_max, double scale=1.0, double shift=0.0)
Return the scalar type that is most likely to have enough precision to store a given range of data on...
static void RGBToXYZ(double r, double g, double b, double *x, double *y, double *z)
Convert color from the RGB system to CIE XYZ.
static void Multiply3x3(const double A[3][3], const double B[3][3], double C[3][3])
Multiply one 3x3 matrix by another according to C = AB.
static double Norm(const double *x, int n)
Compute the norm of n-vector.
static int Round(float f)
Rounds a float to the nearest integer.
Definition: vtkMath.h:228
static void MultiplyMatrixWithVector(const MatrixT &M, const VectorT1 &X, VectorT2 &&Y)
Multiply matrix M with vector Y such that Y = M x X.
Definition: vtkMath.h:950
static double Norm2D(const double x[2])
Compute the norm of a 2-vector.
Definition: vtkMath.h:822
static void XYZToRGB(double x, double y, double z, double *r, double *g, double *b)
Convert color from the CIE XYZ system to RGB.
static void Subtract(const float a[3], const float b[3], float c[3])
Subtraction of two 3-vectors (float version).
Definition: vtkMath.h:463
static void LUSolve3x3(const double A[3][3], const int index[3], double x[3])
LU back substitution for a 3x3 matrix.
static vtkTypeBool SolveHomogeneousLeastSquares(int numberOfSamples, double **xt, int xOrder, double **mt)
Solves for the least squares best fit matrix for the homogeneous equation X'M' = 0'.
static void Outer2D(const float x[2], const float y[2], float A[2][2])
Outer product of two 2-vectors (float version).
Definition: vtkMath.h:787
static bool ProjectVector(const double a[3], const double b[3], double projection[3])
Compute the projection of vector a on vector b and return it in projection[3].
static vtkSmartPointer< vtkMathInternal > Internal
Definition: vtkMath.h:1650
static float Norm(const float *x, int n)
Compute the norm of n-vector.
static vtkTypeBool ExtentIsWithinOtherExtent(const int extent1[6], const int extent2[6])
Return true if first 3D extent is within second 3D extent Extent is x-min, x-max, y-min,...
static void Add(const double a[3], const double b[3], double c[3])
Addition of two 3-vectors (double version).
Definition: vtkMath.h:452
static void RGBToHSV(float r, float g, float b, float *h, float *s, float *v)
Convert color in RGB format (Red, Green, Blue) to HSV format (Hue, Saturation, Value).
static float Norm(const float v[3])
Compute the norm of 3-vector (float version).
Definition: vtkMath.h:634
static ReturnTypeT Dot(const TupleRangeT1 &a, const TupleRangeT2 &b)
Compute dot product between two points p1 and p2.
Definition: vtkMath.h:578
static vtkTypeBool Jacobi(double **a, double *w, double **v)
Jacobi iteration for the solution of eigenvectors/eigenvalues of a 3x3 real symmetric matrix.
static void XYZToLab(const double xyz[3], double lab[3])
Convert Color from the CIE XYZ system to CIE-L*ab.
Definition: vtkMath.h:1417
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
static vtkTypeInt64 Factorial(int N)
Compute N factorial, N! = N*(N-1) * (N-2)...*3*2*1.
static vtkTypeInt64 Binomial(int m, int n)
The number of combinations of n objects from a pool of m objects (m>n).
static double Random()
Generate pseudo-random numbers distributed according to the uniform distribution between 0....
static void LinearSolve(const MatrixT &M, const VectorT1 &x, VectorT2 &y)
This method solves linear systems M * x = y.
Definition: vtkMath.h:1027
static void Identity3x3(float A[3][3])
Set A to the identity matrix.
static double GaussianAmplitude(const double variance, const double distanceFromMean)
Compute the amplitude of a Gaussian function with mean=0 and specified variance.
static void SingularValueDecomposition3x3(const float A[3][3], float U[3][3], float w[3], float VT[3][3])
Perform singular value decomposition on a 3x3 matrix.
static double Nan()
Special IEEE-754 number used to represent Not-A-Number (Nan).
static void Perpendiculars(const float v1[3], float v2[3], float v3[3], double theta)
Given a unit vector v1, find two unit vectors v2 and v3 such that v1 cross v2 = v3 (i....
static double Gaussian(double mean, double std)
Generate pseudo-random numbers distributed according to the Gaussian distribution with mean mean and ...
static bool IsFinite(double x)
Test if a number has finite value i.e.
static void LUSolveLinearSystem(double **A, int *index, double *x, int size)
Solve linear equations Ax = b using LU decomposition A = LU where L is lower triangular matrix and U ...
static double EstimateMatrixCondition(const double *const *A, int size)
Estimate the condition number of a LU factored matrix.
static void LUFactor3x3(float A[3][3], int index[3])
LU Factorization of a 3x3 matrix.
static void FreeCombination(int *combination)
Free the "iterator" array created by vtkMath::BeginCombination.
static double Random(double min, double max)
Generate pseudo-random numbers distributed according to the uniform distribution between min and max.
static void TensorFromSymmetricTensor(const T1 symmTensor[6], T2 tensor[9])
Convert a 6-Component symmetric tensor into a 9-Component tensor, no allocation performed.
static void LabToXYZ(const double lab[3], double xyz[3])
Convert color from the CIE-L*ab system to CIE XYZ.
Definition: vtkMath.h:1406
static double Solve3PointCircle(const double p1[3], const double p2[3], const double p3[3], double center[3])
In Euclidean space, there is a unique circle passing through any given three non-collinear points P1,...
static vtkTypeBool PointIsWithinBounds(const double point[3], const double bounds[6], const double delta[3])
Return true if point is within the given 3D bounds Bounds is x-min, x-max, y-min, y-max,...
static float Dot(const float a[3], const float b[3])
Dot product of two 3-vectors (float version).
Definition: vtkMath.h:546
static void Diagonalize3x3(const float A[3][3], float w[3], float V[3][3])
Diagonalize a symmetric 3x3 matrix and return the eigenvalues in w and the eigenvectors in the column...
static void LabToXYZ(double L, double a, double b, double *x, double *y, double *z)
Convert color from the CIE-L*ab system to CIE XYZ.
static vtkTypeBool GetAdjustedScalarRange(vtkDataArray *array, int comp, double range[2])
Get a vtkDataArray's scalar range for a given component.
static bool ProjectVector(const float a[3], const float b[3], float projection[3])
Compute the projection of vector a on vector b and return it in projection[3].
static void Cross(const float a[3], const float b[3], float c[3])
Cross product of two 3-vectors.
Definition: vtkMath.h:1834
static void MultiplyScalar2D(float a[2], float s)
Multiplies a 2-vector by a scalar (float version).
Definition: vtkMath.h:511
static void HSVToRGB(const float hsv[3], float rgb[3])
Convert color in HSV format (Hue, Saturation, Value) to RGB format (Red, Green, Blue).
Definition: vtkMath.h:1390
static void Assign(const double a[3], double b[3])
Assign values to a 3-vector (double version).
Definition: vtkMath.h:436
static double Determinant2x2(const double c1[2], const double c2[2])
Calculate the determinant of a 2x2 matrix: | a b | | c d |.
Definition: vtkMath.h:849
static T Max(const T &a, const T &b)
Returns the maximum of the two arguments provided.
Definition: vtkMath.h:1727
static void Outer2D(const double x[2], const double y[2], double A[2][2])
Outer product of two 2-vectors (double version).
Definition: vtkMath.h:801
static void RandomSeed(int s)
Initialize seed value.
static double NegInf()
Special IEEE-754 number used to represent negative infinity.
static void MultiplyScalar2D(double a[2], double s)
Multiplies a 2-vector by a scalar (double version).
Definition: vtkMath.h:535
static void LabToRGB(double L, double a, double b, double *red, double *green, double *blue)
Convert color from the CIE-L*ab system to RGB.
static double Gaussian()
Generate pseudo-random numbers distributed according to the standard normal distribution.
static int Ceil(double x)
Rounds a double to the nearest integer not less than itself.
Definition: vtkMath.h:1712
static void HSVToRGB(const double hsv[3], double rgb[3])
Convert color in HSV format (Hue, Saturation, Value) to RGB format (Red, Green, Blue).
Definition: vtkMath.h:1395
~vtkMath() override=default
static ScalarT Dot(const VectorT1 &x, const VectorT2 &y)
Computes the dot product between 2 vectors x and y.
Definition: vtkMath.h:961
static double Inf()
Special IEEE-754 number used to represent positive infinity.
static double GaussianAmplitude(const double mean, const double variance, const double position)
Compute the amplitude of a Gaussian function with specified mean and variance.
static vtkTypeBool Jacobi(float **a, float *w, float **v)
Jacobi iteration for the solution of eigenvectors/eigenvalues of a 3x3 real symmetric matrix.
static int PlaneIntersectsAABB(const double bounds[6], const double normal[3], const double point[3])
Implements Plane / Axis-Aligned Bounding-Box intersection as described in Graphics Gems IV,...
static void RGBToXYZ(const double rgb[3], double xyz[3])
Convert color from the RGB system to CIE XYZ.
Definition: vtkMath.h:1439
static void QuaternionToMatrix3x3(const float quat[4], float A[3][3])
Convert a quaternion to a 3x3 rotation matrix.
Definition: vtkMath.h:2007
static int NearestPowerOfTwo(int x)
Compute the nearest power of two that is not less than x.
Definition: vtkMath.h:1689
static void HSVToRGB(double h, double s, double v, double *r, double *g, double *b)
Convert color in HSV format (Hue, Saturation, Value) to RGB format (Red, Green, Blue).
static void SingularValueDecomposition3x3(const double A[3][3], double U[3][3], double w[3], double VT[3][3])
Perform singular value decomposition on a 3x3 matrix.
static double SignedAngleBetweenVectors(const double v1[3], const double v2[3], const double vn[3])
Compute signed angle in radians between two vectors with regard to a third orthogonal vector.
static float Normalize2D(float v[2])
Normalize (in place) a 2-vector.
Definition: vtkMath.h:1761
static void Invert3x3(const double A[3][3], double AI[3][3])
Invert a 3x3 matrix.
static void HSVToRGB(float h, float s, float v, float *r, float *g, float *b)
Convert color in HSV format (Hue, Saturation, Value) to RGB format (Red, Green, Blue).
static void MultiplyQuaternion(const double q1[4], const double q2[4], double q[4])
Multiply two quaternions.
static void Multiply3x3(const double A[3][3], const double v[3], double u[3])
Multiply a vector by a 3x3 matrix.
static void Outer(const double a[3], const double b[3], double c[3][3])
Outer product of two 3-vectors (double version).
Definition: vtkMath.h:600
static vtkTypeBool InvertMatrix(double **A, double **AI, int size, int *tmp1Size, double *tmp2Size)
Thread safe version of InvertMatrix method.
static vtkTypeBool InvertMatrix(double **A, double **AI, int size)
Invert input square matrix A into matrix AI.
static void LUSolve3x3(const float A[3][3], const int index[3], float x[3])
LU back substitution for a 3x3 matrix.
static int GetSeed()
Return the current seed used by the random number generator.
static void Assign(const VectorT1 &a, VectorT2 &&b)
Assign values to a 3-vector (templated version).
Definition: vtkMath.h:426
static float RadiansFromDegrees(float degrees)
Convert degrees into radians.
Definition: vtkMath.h:1658
static void RotateVectorByWXYZ(const double v[3], const double q[4], double r[3])
rotate a vector by WXYZ using // https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
static void Add(const float a[3], const float b[3], float c[3])
Addition of two 3-vectors (float version).
Definition: vtkMath.h:441
static int CeilLog2(vtkTypeUInt64 x)
Gives the exponent of the lowest power of two not less than x.
static vtkTypeBool AreBoundsInitialized(const double bounds[6])
Are the bounds initialized?
Definition: vtkMath.h:1490
static bool ProjectVector2D(const double a[2], const double b[2], double projection[2])
Compute the projection of 2D vector a on 2D vector b and returns the result in projection[2].
static vtkTypeBool JacobiN(float **a, int n, float *w, float **v)
JacobiN iteration for the solution of eigenvectors/eigenvalues of a nxn real symmetric matrix.
static vtkMatrixUtilities::ScalarTypeExtractor< MatrixT >::value_type Determinant(const MatrixT &M)
Computes the determinant of input square SizeT x SizeT matrix M.
Definition: vtkMath.h:984
static int NextCombination(int m, int n, int *combination)
Given m, n, and a valid combination of n integers in the range [0,m[, this function alters the intege...
static constexpr double Pi()
A mathematical constant.
Definition: vtkMath.h:206
static double GaussianWeight(const double variance, const double distanceFromMean)
Compute the amplitude of an unnormalized Gaussian function with mean=0 and specified variance.
static void Multiply3x3(const float A[3][3], const float v[3], float u[3])
Multiply a vector by a 3x3 matrix.
static void Subtract(const double a[3], const double b[3], double c[3])
Subtraction of two 3-vectors (double version).
Definition: vtkMath.h:474
static void Matrix3x3ToQuaternion(const float A[3][3], float quat[4])
Convert a 3x3 matrix into a quaternion.
Definition: vtkMath.h:2081
static vtkMath * New()
static void Orthogonalize3x3(const double A[3][3], double B[3][3])
Orthogonalize a 3x3 matrix and put the result in B.
static void XYZToRGB(const double xyz[3], double rgb[3])
Convert color from the CIE XYZ system to RGB.
Definition: vtkMath.h:1428
static double ClampAndNormalizeValue(double value, const double range[2])
Clamp a value against a range and then normalize it between 0 and 1.
Definition: vtkMath.h:1915
static void MultiplyScalar(double a[3], double s)
Multiplies a 3-vector by a scalar (double version).
Definition: vtkMath.h:523
static double Dot2D(const double x[2], const double y[2])
Dot product of two 2-vectors.
Definition: vtkMath.h:782
static void LinearSolve3x3(const float A[3][3], const float x[3], float y[3])
Solve Ay = x for y and place the result in y.
static void MultiplyMatrix(const MatrixT1 &M1, const MatrixT2 &M2, MatrixT3 &&M3)
Multiply matrices such that M3 = M1 x M2.
Definition: vtkMath.h:923
static vtkTypeBool IsNan(double x)
Test if a number is equal to the special floating point value Not-A-Number (Nan).
static void Diagonalize3x3(const double A[3][3], double w[3], double V[3][3])
Diagonalize a symmetric 3x3 matrix and return the eigenvalues in w and the eigenvectors in the column...
static void RGBToLab(const double rgb[3], double lab[3])
Convert color from the RGB system to CIE-L*ab.
Definition: vtkMath.h:1453
static int Floor(double x)
Rounds a double to the nearest integer not greater than itself.
Definition: vtkMath.h:1703
static void RotateVectorByNormalizedQuaternion(const double v[3], const double q[4], double r[3])
rotate a vector by a normalized quaternion using // https://en.wikipedia.org/wiki/Rodrigues%27_rotati...
static void Subtract(const VectorT1 &a, const VectorT2 &b, VectorT3 &&c)
Subtraction of two 3-vectors (templated version).
Definition: vtkMath.h:488
static vtkTypeBool BoundsIsWithinOtherBounds(const double bounds1[6], const double bounds2[6], const double delta[3])
Return true if first 3D bounds is within the second 3D bounds Bounds is x-min, x-max,...
static double Determinant2x2(double a, double b, double c, double d)
Calculate the determinant of a 2x2 matrix: | a b | | c d |.
Definition: vtkMath.h:848
static void RGBToHSV(const double rgb[3], double hsv[3])
Convert color in RGB format (Red, Green, Blue) to HSV format (Hue, Saturation, Value).
Definition: vtkMath.h:1375
static vtkTypeBool JacobiN(double **a, int n, double *w, double **v)
JacobiN iteration for the solution of eigenvectors/eigenvalues of a nxn real symmetric matrix.
static double AngleBetweenVectors(const double v1[3], const double v2[3])
Compute angle in radians between two vectors.
static void MultiplyMatrix(const double *const *A, const double *const *B, unsigned int rowA, unsigned int colA, unsigned int rowB, unsigned int colB, double **C)
General matrix multiplication.
static float DegreesFromRadians(float radians)
Convert radians into degrees.
Definition: vtkMath.h:1670
static float Determinant2x2(const float c1[2], const float c2[2])
Compute determinant of 2x2 matrix.
Definition: vtkMath.h:839
static int Round(double f)
Definition: vtkMath.h:229
static vtkTypeBool IsInf(double x)
Test if a number is equal to the special floating point value infinity.
static void UninitializeBounds(double bounds[6])
Set the bounds to an uninitialized state.
Definition: vtkMath.h:1475
vtkMath()=default
static void RGBToHSV(double r, double g, double b, double *h, double *s, double *v)
Convert color in RGB format (Red, Green, Blue) to HSV format (Hue, Saturation, Value).
static void Outer(const float a[3], const float b[3], float c[3][3])
Outer product of two 3-vectors (float version).
Definition: vtkMath.h:586
static int * BeginCombination(int m, int n)
Start iterating over "m choose n" objects.
static double Norm(const double v[3])
Compute the norm of 3-vector (double version).
Definition: vtkMath.h:639
static void RoundDoubleToIntegralIfNecessary(double val, OutT *ret)
Round a double to type OutT if OutT is integral, otherwise simply clamp the value to the output range...
Definition: vtkMath.h:237
static void RotateVectorByWXYZ(const float v[3], const float q[4], float r[3])
rotate a vector by WXYZ using // https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
static bool IsPowerOfTwo(vtkTypeUInt64 x)
Returns true if integer is a power of two.
Definition: vtkMath.h:1682
static void Invert3x3(const float A[3][3], float AI[3][3])
Invert a 3x3 matrix.
static float Normalize(float v[3])
Normalize (in place) a 3-vector.
Definition: vtkMath.h:1733
static void Transpose3x3(const double A[3][3], double AT[3][3])
Transpose a 3x3 matrix.
static ReturnTypeT SquaredNorm(const TupleRangeT &v)
Compute the squared norm of a 3-vector.
Definition: vtkMath.h:654
static double Determinant3x3(const float A[3][3])
Return the determinant of a 3x3 matrix.
Definition: vtkMath.h:1865
static float Dot2D(const float x[2], const float y[2])
Dot product of two 2-vectors.
Definition: vtkMath.h:777
static void RotateVectorByNormalizedQuaternion(const float v[3], const float q[4], float r[3])
rotate a vector by a normalized quaternion using // https://en.wikipedia.org/wiki/Rodrigues%27_rotati...
static ScalarT Dot(const VectorT1 &x, const MatrixT &M, const VectorT2 &y)
Computes the dot product x^T M y, where x and y are vectors and M is a metric matrix.
Definition: vtkMath.h:1048
static void RGBToHSV(const float rgb[3], float hsv[3])
Convert color in RGB format (Red, Green, Blue) to HSV format (Hue, Saturation, Value).
Definition: vtkMath.h:1370
static void Orthogonalize3x3(const float A[3][3], float B[3][3])
Orthogonalize a 3x3 matrix and put the result in B.
static bool ProjectVector2D(const float a[2], const float b[2], float projection[2])
Compute the projection of 2D vector a on 2D vector b and returns the result in projection[2].
static vtkTypeBool SolveLinearSystemGEPP2x2(double a00, double a01, double a10, double a11, double b0, double b1, double &x0, double &x1)
Solve linear equation Ax = b using Gaussian Elimination with Partial Pivoting for a 2x2 system.
static vtkTypeBool SolveLinearSystem(double **A, double *x, int size)
Solve linear equations Ax = b using Crout's method.
static void LabToRGB(const double lab[3], double rgb[3])
Convert color from the CIE-L*ab system to RGB.
Definition: vtkMath.h:1464
static float Norm2D(const float x[2])
Compute the norm of a 2-vector.
Definition: vtkMath.h:816
static double GaussianWeight(const double mean, const double variance, const double position)
Compute the amplitude of an unnormalized Gaussian function with specified mean and variance.
static vtkTypeBool LUFactorLinearSystem(double **A, int *index, int size, double *tmpSize)
Thread safe version of LUFactorLinearSystem method.
static void LinearSolve3x3(const double A[3][3], const double x[3], double y[3])
Solve Ay = x for y and place the result in y.
static void XYZToLab(double x, double y, double z, double *L, double *a, double *b)
Convert Color from the CIE XYZ system to CIE-L*ab.
static void InvertMatrix(const MatrixT1 &M1, MatrixT2 &&M2)
Computes the inverse of input matrix M1 into M2.
Definition: vtkMath.h:1007
static void MultiplyScalar(float a[3], float s)
Multiplies a 3-vector by a scalar (float version).
Definition: vtkMath.h:499
static T Min(const T &a, const T &b)
Returns the minimum of the two arguments provided.
Definition: vtkMath.h:1720
static void Perpendiculars(const double v1[3], double v2[3], double v3[3], double theta)
Given a unit vector v1, find two unit vectors v2 and v3 such that v1 cross v2 = v3 (i....
static T ClampValue(const T &value, const T &min, const T &max)
Clamp some value against a range, return the result.
Definition: vtkMath.h:1878
static vtkTypeBool SolveLeastSquares(int numberOfSamples, double **xt, int xOrder, double **yt, int yOrder, double **mt, int checkHomogeneous=1)
Solves for the least squares best fit matrix for the equation X'M' = Y'.
static void Identity3x3(double A[3][3])
Set A to the identity matrix.
static void LUFactor3x3(double A[3][3], int index[3])
LU Factorization of a 3x3 matrix.
static vtkTypeBool LUFactorLinearSystem(double **A, int *index, int size)
Factor linear equations Ax = b using LU decomposition into the form A = LU where L is a unit lower tr...
static void RGBToLab(double red, double green, double blue, double *L, double *a, double *b)
Convert color from the RGB system to CIE-L*ab.
static void MultiplyQuaternion(const float q1[4], const float q2[4], float q[4])
Multiply two quaternions.
static void ClampValues(const double *values, int nb_values, const double range[2], double *clamped_values)
Clamp some values against a range The method without 'clamped_values' will perform in-place clamping.
static void Transpose3x3(const float A[3][3], float AT[3][3])
Transpose a 3x3 matrix.
static void ClampValues(double *values, int nb_values, const double range[2])
Clamp some values against a range The method without 'clamped_values' will perform in-place clamping.
static int QuadraticRoot(double a, double b, double c, double min, double max, double *u)
find roots of ax^2+bx+c=0 in the interval min,max.
Matrix wrapping class.
Park and Miller Sequence of pseudo random numbers.
abstract base class for most VTK objects
Definition: vtkObject.h:73
represent and manipulate 3D points
Definition: vtkPoints.h:143
@ point
Definition: vtkX3D.h:242
@ value
Definition: vtkX3D.h:226
@ scale
Definition: vtkX3D.h:235
@ range
Definition: vtkX3D.h:244
@ center
Definition: vtkX3D.h:236
@ type
Definition: vtkX3D.h:522
@ position
Definition: vtkX3D.h:267
@ size
Definition: vtkX3D.h:259
@ index
Definition: vtkX3D.h:252
void RoundDoubleToIntegralIfNecessary(double val, OutT *ret)
Definition: vtkMath.h:2103
detail::ScalarTypeExtractor< std::is_array< DerefContainer >::value||std::is_pointer< DerefContainer >::value, ContainerT >::value_type value_type
Template defining traits of native types used by VTK.
Definition: vtkTypeTraits.h:30
int vtkTypeBool
Definition: vtkABI.h:69
double vtkDeterminant3x3(const T A[3][3])
Definition: vtkMath.h:1858
#define max(a, b)