pyFAI.io package
pyFAI.io.image module
Module function to read images.
- pyFAI.io.image.read_data(image_path)
Returns a numpy.array image from a file name or a URL.
- Parameters:
image_path (str) – Path of the image file
- Return type:
numpy.ndarray regardless the dimention or the content
- Raises:
IOError – if the data is not reachable
TypeError – if the data is not an image (wrong size, wrong dimension)
- pyFAI.io.image.read_image_data(image_path)
Returns a numpy.array image from a file name or a URL.
- Parameters:
image_path (str) – Path of the image file
- Return type:
numpy.ndarray
- Raises:
IOError – if the data is not reachable
TypeError – if the data is not an image (wrong size, wrong dimension)
pyFAI.io.integration_config module
Module function to manage poni files.
- class pyFAI.io.integration_config.ConfigurationReader(config)
Bases:
object
- __init__(config)
- Parameters:
config – dictonary
- pop_detector()
Returns the detector stored in the json configuration.
- Return type:
- pop_method(default=None)
Returns a Method from the method field from the json dictionary.
- Return type:
pyFAI.method_registry.Method
- pop_ponifile()
Returns the geometry subpart of the configuration
- pyFAI.io.integration_config.normalize(config, inplace=False)
Normalize the configuration file to the one supported internally (the last one).
- Parameters:
config (dict) – The configuration dictionary to read
inplace (bool) – In true, the dictionary is edited inplace
- Raises:
ValueError – If the configuration do not match.
pyFAI.io.nexus module
Module for writing HDF5 in the Nexus style
- class pyFAI.io.nexus.Nexus(filename, mode=None, creator=None)
Bases:
object
Writer class to handle Nexus/HDF5 data
Manages:
entry
pyFAI-subentry
detector
TODO: make it thread-safe !!!
- __init__(filename, mode=None, creator=None)
Constructor
- Parameters:
filename – name of the hdf5 file containing the nexus
mode – can be ‘r’, ‘a’, ‘w’, ‘+’ ….
creator – set as attr of the NXroot
- close(end_time=None)
close the filename and update all entries
- deep_copy(name, obj, where='/', toplevel=None, excluded=None, overwrite=False)
perform a deep copy: create a “name” entry in self containing a copy of the object
- Parameters:
where – path to the toplevel object (i.e. root)
toplevel – firectly the top level Group
excluded – list of keys to be excluded
overwrite – replace content if already existing
- find_detector(all=False)
Tries to find a detector within a NeXus file, takes the first compatible detector
- Parameters:
all – return all detectors found as a list
- flush()
- classmethod get_attr(dset, name, default=None)
Return the attribute of the dataset
Handles the ascii -> unicode issue in python3 #275
- Parameters:
dset – a HDF5 dataset (or a group)
name – name of the attribute
default – default value to be returned
- Returns:
attribute value decoded in python3 or default
- get_class(grp, class_type='NXcollection')
return all sub-groups of the given type within a group
- Parameters:
grp – HDF5 group
class_type – name of the NeXus class
- get_data(grp, class_type='NXdata')
return all dataset of the the NeXus class NXdata WRONG, do not use…
- Parameters:
grp – HDF5 group
class_type – name of the NeXus class
- get_dataset(grp, attr=None, value=None)
return list of dataset of the group matching the given attribute having the given value
- Parameters:
grp – HDF5 group
attr – name of an attribute
value – requested value for the attribute
- Returns:
list of dataset
- get_default_NXdata()
Return the default plot configured in the nexus structure.
- Returns:
the group with the default plot or None if not found
- get_entries()
retrieves all entry sorted the latest first.
- Returns:
list of HDF5 groups
- get_entry(name)
Retrieves an entry from its name
- Parameters:
name – name of the entry to retrieve
- Returns:
HDF5 group of NXclass == NXentry
- new_class(grp, name, class_type='NXcollection')
create a new sub-group with type class_type :param grp: parent group :param name: name of the sub-group :param class_type: NeXus class name :return: subgroup created
- new_detector(name='detector', entry='entry', subentry='pyFAI')
Create a new entry/pyFAI/Detector
- Parameters:
detector – name of the detector
entry – name of the entry
subentry – all pyFAI description of detectors should be in a pyFAI sub-entry
- new_entry(entry='entry', program_name='pyFAI', title=None, force_time=None, force_name=False)
Create a new entry
- Parameters:
entry – name of the entry
program_name – value of the field as string
title – description of experiment as str
force_time – enforce the start_time (as string!)
force_name – force the entry name as such, without numerical suffix.
- Returns:
the corresponding HDF5 group
- new_instrument(entry='entry', instrument_name='id00')
Create an instrument in an entry or create both the entry and the instrument if
- pyFAI.io.nexus.from_isotime(text, use_tz=False)
- Parameters:
text – string representing the time is iso format
- pyFAI.io.nexus.get_isotime(forceTime=None)
- Parameters:
forceTime (float) – enforce a given time (current by default)
- Returns:
the current time as an ISO8601 string
- Return type:
string
- pyFAI.io.nexus.is_hdf5(filename)
Check if a file is actually a HDF5 file
- Parameters:
filename – this file has better to exist
pyFAI.io.ponifile module
Module function to manage poni files.
- class pyFAI.io.ponifile.PoniFile(data=None)
Bases:
object
- __init__(data=None)
- as_dict()
- property detector
- Return type:
Union[None,float]
- property dist
- Return type:
Union[None,float]
- property poni1
- Return type:
Union[None,float]
- property poni2
- Return type:
Union[None,float]
- read_from_dict(config)
Initialize this object using a dictionary.
Note
The dictionary is versionned.
- read_from_duck(duck)
Initialize the object using an object providing the same API.
The duck object must provide dist, poni1, poni2, rot1, rot2, rot3, wavelength, and detector.
- read_from_file(filename)
- property rot1
- Return type:
Union[None,float]
- property rot2
- Return type:
Union[None,float]
- property rot3
- Return type:
Union[None,float]
- property wavelength
- Return type:
Union[None,float]
- write(fd)
Write this object to an open stream.
pyFAI.io.sparse_frame module
Module for writing sparse frames in HDF5 in the Nexus style
- pyFAI.io.sparse_frame.save_sparse(filename, frames, beamline='beamline', ai=None, source=None, extra={})
Write the list of frames into a HDF5 file
- Parameters:
filename – name of the file
frames – list of sparse frames (as built by sparsify)
beamline – name of the beamline as text
ai – Instance of geometry or azimuthal integrator
source – list of input files
extra – dict with extra metadata
- Returns:
None
Module contents
Module for “high-performance” writing in either 1D with Ascii , or 2D with FabIO or even nD with n varying from 2 to 4 using HDF5
Stand-alone module which tries to offer interface to HDF5 via H5Py and capabilities to write EDF or other formats using fabio.
Can be imported without h5py but then limited to fabio & ascii formats.
TODO:
Add monitor to HDF5
- class pyFAI.io.AsciiWriter(filename=None, prefix='fai_', extension='.dat')
Bases:
Writer
Ascii file writer (.xy or .dat)
- __init__(filename=None, prefix='fai_', extension='.dat')
- init(fai_cfg=None, lima_cfg=None)
Creates the directory that will host the output file(s)
- write(data, index=0)
To be implemented
- class pyFAI.io.DefaultAiWriter(filename, engine=None)
Bases:
Writer
- __init__(filename, engine=None)
Constructor of the historical writer of azimuthalIntegrator.
- Parameters:
filename – name of the output file
ai – integrator, should provide make_headers method.
- close()
- flush()
To be implemented
- init(fai_cfg=None, lima_cfg=None)
Creates the directory that will host the output file(s) :param fai_cfg: configuration for worker :param lima_cfg: configuration for acquisition
- make_headers(hdr='#', has_mask=None, has_dark=None, has_flat=None, polarization_factor=None, normalization_factor=None, metadata=None)
- Parameters:
hdr (str) – string used as comment in the header
has_dark (bool) – save the darks filenames (default: no)
has_flat (bool) – save the flat filenames (default: no)
polarization_factor (float) – the polarization factor
- Returns:
the header
- Return type:
str
- save1D(filename, dim1, I, error=None, dim1_unit='2th_deg', has_mask=None, has_dark=False, has_flat=False, polarization_factor=None, normalization_factor=None, metadata=None)
This method save the result of a 1D integration as ASCII file.
- Parameters:
filename (str) – the filename used to save the 1D integration
dim1 (numpy.ndarray) – the x coordinates of the integrated curve
I (numpy.mdarray) – The integrated intensity
error (numpy.ndarray or None) – the error bar for each intensity
dim1_unit (pyFAI.units.Unit) – the unit of the dim1 array
has_mask – a mask was used
has_dark – a dark-current was applied
has_flat – flat-field was applied
polarization_factor (float, None) – the polarization factor
normalization_factor (float, None) – the monitor value
metadata – JSON serializable dictionary containing the metadata
- save2D(filename, I, dim1, dim2, error=None, dim1_unit='2th_deg', has_mask=None, has_dark=False, has_flat=False, polarization_factor=None, normalization_factor=None, metadata=None, format_='edf')
This method save the result of a 2D integration.
- Parameters:
filename (str) – the filename used to save the 2D histogram
dim1 (numpy.ndarray) – the 1st coordinates of the histogram
dim1 – the 2nd coordinates of the histogram
I (numpy.mdarray) – The integrated intensity
error (numpy.ndarray or None) – the error bar for each intensity
dim1_unit (pyFAI.units.Unit) – the unit of the dim1 array
has_mask – a mask was used
has_dark – a dark-current was applied
has_flat – flat-field was applied
polarization_factor (float, None) – the polarization factor
normalization_factor (float, None) – the monitor value
metadata – JSON serializable dictionary containing the metadata
format – file-format to be used (FabIO format)
- set_filename(filename)
Define the filename while will be used
- write(data)
Minimalistic method to limit the overhead.
- Parameters:
data – array with intensities or tuple (2th,I) or (I,2th,chi) :type data: Integrate1dResult, Integrate2dResult
- class pyFAI.io.FabioWriter(filename=None)
Bases:
Writer
Image file writer based on FabIO
TODO !!!
- __init__(filename=None)
- init(fai_cfg=None, lima_cfg=None, directory='pyFAI')
Creates the directory that will host the output file(s)
- write(data, index=0)
To be implemented
- class pyFAI.io.HDF5Writer(filename, hpath=None, entry_template=None, fast_scan_width=None, append_frames=False, mode='error')
Bases:
Writer
Class allowing to write HDF5 Files.
- CONFIG = 'configuration'
- DATASET_NAME = 'data'
- MODE_APPEND = 'append'
- MODE_DELETE = 'delete'
- MODE_ERROR = 'error'
- MODE_OVERWRITE = 'overwrite'
- __init__(filename, hpath=None, entry_template=None, fast_scan_width=None, append_frames=False, mode='error')
Constructor of an HDF5 writer:
- Parameters:
filename (str) – name of the file
hpath (str) – Name of the entry group that will contains the NXprocess.
entry_template (str) – Formattable template to create a new entry (if hpath is not specified)
fast_scan_width (int) – set it to define the width of
- close()
- flush(radial=None, azimuthal=None)
Update some data like axis units and so on.
- Parameters:
radial – position in radial direction
azimuthal – position in azimuthal direction
- init(fai_cfg=None, lima_cfg=None)
Initializes the HDF5 file for writing :param fai_cfg: the configuration of the worker as a dictionary
- set_hdf5_input_dataset(dataset)
record the input dataset with an external link
- write(data, index=None)
Minimalistic method to limit the overhead. :param data: array with intensities or tuple (2th,I) or (I,2th,chi)
- class pyFAI.io.Writer(filename=None, extension=None)
Bases:
object
Abstract class for writers.
- CONFIG_ITEMS = ['filename', 'dirname', 'extension', 'subdir', 'hpath']
- __init__(filename=None, extension=None)
Constructor of the class
- flush(*arg, **kwarg)
To be implemented
- init(fai_cfg=None, lima_cfg=None)
Creates the directory that will host the output file(s) :param fai_cfg: configuration for worker :param lima_cfg: configuration for acquisition
- setJsonConfig(json_config=None)
Sets the JSON configuration
- write(data)
To be implemented