pandas.plotting.scatter_matrix

pandas.plotting.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwargs)[source]

Draw a matrix of scatter plots.

Parameters:
frameDataFrame
alphafloat, optional

Amount of transparency applied.

figsize(float,float), optional

A tuple (width, height) in inches.

axMatplotlib axis object, optional
gridbool, optional

Setting this to True will show the grid.

diagonal{‘hist’, ‘kde’}

Pick between ‘kde’ and ‘hist’ for either Kernel Density Estimation or Histogram plot in the diagonal.

markerstr, optional

Matplotlib marker type, default ‘.’.

density_kwdskeywords

Keyword arguments to be passed to kernel density estimate plot.

hist_kwdskeywords

Keyword arguments to be passed to hist function.

range_paddingfloat, default 0.05

Relative extension of axis range in x and y with respect to (x_max - x_min) or (y_max - y_min).

**kwargs

Keyword arguments to be passed to scatter function.

Returns:
numpy.ndarray

A matrix of scatter plots.

Examples

>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
>>> pd.plotting.scatter_matrix(df, alpha=0.2)
array([[<AxesSubplot: xlabel='A', ylabel='A'>,
    <AxesSubplot: xlabel='B', ylabel='A'>,
    <AxesSubplot: xlabel='C', ylabel='A'>,
    <AxesSubplot: xlabel='D', ylabel='A'>],
   [<AxesSubplot: xlabel='A', ylabel='B'>,
    <AxesSubplot: xlabel='B', ylabel='B'>,
    <AxesSubplot: xlabel='C', ylabel='B'>,
    <AxesSubplot: xlabel='D', ylabel='B'>],
   [<AxesSubplot: xlabel='A', ylabel='C'>,
    <AxesSubplot: xlabel='B', ylabel='C'>,
    <AxesSubplot: xlabel='C', ylabel='C'>,
    <AxesSubplot: xlabel='D', ylabel='C'>],
   [<AxesSubplot: xlabel='A', ylabel='D'>,
    <AxesSubplot: xlabel='B', ylabel='D'>,
    <AxesSubplot: xlabel='C', ylabel='D'>,
    <AxesSubplot: xlabel='D', ylabel='D'>]], dtype=object)
../../_images/pandas-plotting-scatter_matrix-1.png