pandas.core.window.rolling.Rolling.mean¶
- Rolling.mean(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]¶
Calculate the rolling mean.
- Parameters:
- numeric_onlybool, default False
Include only float, int, boolean columns.
New in version 1.5.0.
- *args
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
- enginestr, default None
'cython'
: Runs the operation through C-extensions from cython.'numba'
: Runs the operation through JIT compiled code from numba.None
: Defaults to'cython'
or globally settingcompute.use_numba
New in version 1.3.0.
- engine_kwargsdict, default None
For
'cython'
engine, there are no acceptedengine_kwargs
For
'numba'
engine, the engine can acceptnopython
,nogil
andparallel
dictionary keys. The values must either beTrue
orFalse
. The defaultengine_kwargs
for the'numba'
engine is{'nopython': True, 'nogil': False, 'parallel': False}
New in version 1.3.0.
- **kwargs
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
- Returns:
- Series or DataFrame
Return type is the same as the original object with
np.float64
dtype.
See also
pandas.Series.rolling
Calling rolling with Series data.
pandas.DataFrame.rolling
Calling rolling with DataFrames.
pandas.Series.mean
Aggregating mean for Series.
pandas.DataFrame.mean
Aggregating mean for DataFrame.
Notes
See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
Examples
The below examples will show rolling mean calculations with window sizes of two and three, respectively.
>>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64
>>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64