pandas.core.window.expanding.Expanding.apply¶
- Expanding.apply(func, raw=False, engine=None, engine_kwargs=None, args=None, kwargs=None)[source]¶
Calculate the expanding custom aggregation function.
- Parameters:
- funcfunction
Must produce a single value from an ndarray input if
raw=True
or a single value from a Series ifraw=False
. Can also accept a Numba JIT function withengine='numba'
specified.Changed in version 1.0.0.
- rawbool, default False
False
: passes each row or column as a Series to the function.True
: the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance.
- enginestr, default None
'cython'
: Runs rolling apply through C-extensions from cython.'numba'
: Runs rolling apply through JIT compiled code from numba. Only available whenraw
is set toTrue
.None
: Defaults to'cython'
or globally settingcompute.use_numba
New in version 1.0.0.
- engine_kwargsdict, default None
For
'cython'
engine, there are no acceptedengine_kwargs
For
'numba'
engine, the engine can acceptnopython
,nogil
andparallel
dictionary keys. The values must either beTrue
orFalse
. The defaultengine_kwargs
for the'numba'
engine is{'nopython': True, 'nogil': False, 'parallel': False}
and will be applied to both thefunc
and theapply
rolling aggregation.New in version 1.0.0.
- argstuple, default None
Positional arguments to be passed into func.
- kwargsdict, default None
Keyword arguments to be passed into func.
- Returns:
- Series or DataFrame
Return type is the same as the original object with
np.float64
dtype.
See also
pandas.Series.expanding
Calling expanding with Series data.
pandas.DataFrame.expanding
Calling expanding with DataFrames.
pandas.Series.apply
Aggregating apply for Series.
pandas.DataFrame.apply
Aggregating apply for DataFrame.