pandas.Series.apply¶
- Series.apply(func, convert_dtype=True, args=(), **kwargs)[source]¶
Invoke function on values of Series.
Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values.
- Parameters:
- funcfunction
Python function or NumPy ufunc to apply.
- convert_dtypebool, default True
Try to find better dtype for elementwise function results. If False, leave as dtype=object. Note that the dtype is always preserved for some extension array dtypes, such as Categorical.
- argstuple
Positional arguments passed to func after the series value.
- **kwargs
Additional keyword arguments passed to func.
- Returns:
- Series or DataFrame
If func returns a Series object the result will be a DataFrame.
See also
Series.map
For element-wise operations.
Series.agg
Only perform aggregating type operations.
Series.transform
Only perform transforming type operations.
Notes
Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details.
Examples
Create a series with typical summer temperatures for each city.
>>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64
Square the values by defining a function and passing it as an argument to
apply()
.>>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64
Square the values by passing an anonymous function as an argument to
apply()
.>>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64
Define a custom function that needs additional positional arguments and pass these additional arguments using the
args
keyword.>>> def subtract_custom_value(x, custom_value): ... return x - custom_value
>>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64
Define a custom function that takes keyword arguments and pass these arguments to
apply
.>>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x
>>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64
Use a function from the Numpy library.
>>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64