pandas.DataFrame.rpow¶
- DataFrame.rpow(other, axis='columns', level=None, fill_value=None)[source]¶
Get Exponential power of dataframe and other, element-wise (binary operator rpow).
Equivalent to
other ** dataframe
, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, pow.Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.
- Parameters:
- otherscalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.
- levelint or label
Broadcast across a level, matching Index values on the passed MultiIndex level.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
- Returns:
- DataFrame
Result of the arithmetic operation.
See also
DataFrame.add
Add DataFrames.
DataFrame.sub
Subtract DataFrames.
DataFrame.mul
Multiply DataFrames.
DataFrame.div
Divide DataFrames (float division).
DataFrame.truediv
Divide DataFrames (float division).
DataFrame.floordiv
Divide DataFrames (integer division).
DataFrame.mod
Calculate modulo (remainder after division).
DataFrame.pow
Calculate exponential power.
Notes
Mismatched indices will be unioned together.
Examples
>>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Add a scalar with operator version which return the same results.
>>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Divide by constant with reverse version.
>>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0
>>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778
Subtract a list and Series by axis with operator version.
>>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358
>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Multiply a dictionary by axis.
>>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720
>>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080
Multiply a DataFrame of different shape with operator version.
>>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4
>>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN
>>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0
Divide by a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720
>>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0