NumPy

Previous topic

numpy.random.RandomState.zipf

Next topic

numpy.random.binomial

numpy.random.beta

numpy.random.beta(a, b, size=None)

Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribution function

f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
(1 - x)^{\beta - 1},

where the normalization, B, is the beta function,

B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
(1 - t)^{\beta - 1} dt.

It is often seen in Bayesian inference and order statistics.

Note

New code should use the beta method of a default_rng() instance instead; please see the Quick Start.

Parameters
afloat or array_like of floats

Alpha, positive (>0).

bfloat or array_like of floats

Beta, positive (>0).

sizeint or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is returned if a and b are both scalars. Otherwise, np.broadcast(a, b).size samples are drawn.

Returns
outndarray or scalar

Drawn samples from the parameterized beta distribution.

See also

Generator.beta

which should be used for new code.