Hyperbolic functions

Hyperbolic functions

cosh()

mpmath.cosh(x, **kwargs)

Computes the hyperbolic cosine of x, cosh(x)=(ex+ex)/2. Values and limits include:

>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> cosh(0)
1.0
>>> cosh(1)
1.543080634815243778477906
>>> cosh(-inf), cosh(+inf)
(+inf, +inf)

The hyperbolic cosine is an even, convex function with a global minimum at x=0, having a Maclaurin series that starts:

>>> nprint(chop(taylor(cosh, 0, 5)))
[1.0, 0.0, 0.5, 0.0, 0.0416667, 0.0]

Generalized to complex numbers, the hyperbolic cosine is equivalent to a cosine with the argument rotated in the imaginary direction, or coshx=cosix:

>>> cosh(2+3j)
(-3.724545504915322565473971 + 0.5118225699873846088344638j)
>>> cos(3-2j)
(-3.724545504915322565473971 + 0.5118225699873846088344638j)

sinh()

mpmath.sinh(x, **kwargs)

Computes the hyperbolic sine of x, sinh(x)=(exex)/2. Values and limits include:

>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> sinh(0)
0.0
>>> sinh(1)
1.175201193643801456882382
>>> sinh(-inf), sinh(+inf)
(-inf, +inf)

The hyperbolic sine is an odd function, with a Maclaurin series that starts:

>>> nprint(chop(taylor(sinh, 0, 5)))
[0.0, 1.0, 0.0, 0.166667, 0.0, 0.00833333]

Generalized to complex numbers, the hyperbolic sine is essentially a sine with a rotation i applied to the argument; more precisely, sinhx=isinix:

>>> sinh(2+3j)
(-3.590564589985779952012565 + 0.5309210862485198052670401j)
>>> j*sin(3-2j)
(-3.590564589985779952012565 + 0.5309210862485198052670401j)

tanh()

mpmath.tanh(x, **kwargs)

Computes the hyperbolic tangent of x, tanh(x)=sinh(x)/cosh(x). Values and limits include:

>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> tanh(0)
0.0
>>> tanh(1)
0.7615941559557648881194583
>>> tanh(-inf), tanh(inf)
(-1.0, 1.0)

The hyperbolic tangent is an odd, sigmoidal function, similar to the inverse tangent and error function. Its Maclaurin series is:

>>> nprint(chop(taylor(tanh, 0, 5)))
[0.0, 1.0, 0.0, -0.333333, 0.0, 0.133333]

Generalized to complex numbers, the hyperbolic tangent is essentially a tangent with a rotation i applied to the argument; more precisely, tanhx=itanix:

>>> tanh(2+3j)
(0.9653858790221331242784803 - 0.009884375038322493720314034j)
>>> j*tan(3-2j)
(0.9653858790221331242784803 - 0.009884375038322493720314034j)

sech()

mpmath.sech(x)

Computes the hyperbolic secant of x, sech(x)=1cosh(x).

csch()

mpmath.csch(x)

Computes the hyperbolic cosecant of x, csch(x)=1sinh(x).

coth()

mpmath.coth(x)

Computes the hyperbolic cotangent of x, coth(x)=cosh(x)sinh(x).

Inverse hyperbolic functions

acosh()

mpmath.acosh(x, **kwargs)

Computes the inverse hyperbolic cosine of x, cosh1(x)=log(x+x+1x1).

asinh()

mpmath.asinh(x, **kwargs)

Computes the inverse hyperbolic sine of x, sinh1(x)=log(x+1+x2).

atanh()

mpmath.atanh(x, **kwargs)

Computes the inverse hyperbolic tangent of x, tanh1(x)=12(log(1+x)log(1x)).

asech()

mpmath.asech(x)

Computes the inverse hyperbolic secant of x, sech1(x)=cosh1(1/x).

acsch()

mpmath.acsch(x)

Computes the inverse hyperbolic cosecant of x, csch1(x)=sinh1(1/x).

acoth()

mpmath.acoth(x)

Computes the inverse hyperbolic cotangent of x, coth1(x)=tanh1(1/x).