Hyperbolic functions¶
Hyperbolic functions¶
cosh()
¶
- mpmath.cosh(x, **kwargs)¶
Computes the hyperbolic cosine of
, . Values and limits include:>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> cosh(0) 1.0 >>> cosh(1) 1.543080634815243778477906 >>> cosh(-inf), cosh(+inf) (+inf, +inf)
The hyperbolic cosine is an even, convex function with a global minimum at
, having a Maclaurin series that starts:>>> nprint(chop(taylor(cosh, 0, 5))) [1.0, 0.0, 0.5, 0.0, 0.0416667, 0.0]
Generalized to complex numbers, the hyperbolic cosine is equivalent to a cosine with the argument rotated in the imaginary direction, or
:>>> cosh(2+3j) (-3.724545504915322565473971 + 0.5118225699873846088344638j) >>> cos(3-2j) (-3.724545504915322565473971 + 0.5118225699873846088344638j)
sinh()
¶
- mpmath.sinh(x, **kwargs)¶
Computes the hyperbolic sine of
, . Values and limits include:>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> sinh(0) 0.0 >>> sinh(1) 1.175201193643801456882382 >>> sinh(-inf), sinh(+inf) (-inf, +inf)
The hyperbolic sine is an odd function, with a Maclaurin series that starts:
>>> nprint(chop(taylor(sinh, 0, 5))) [0.0, 1.0, 0.0, 0.166667, 0.0, 0.00833333]
Generalized to complex numbers, the hyperbolic sine is essentially a sine with a rotation
applied to the argument; more precisely, :>>> sinh(2+3j) (-3.590564589985779952012565 + 0.5309210862485198052670401j) >>> j*sin(3-2j) (-3.590564589985779952012565 + 0.5309210862485198052670401j)
tanh()
¶
- mpmath.tanh(x, **kwargs)¶
Computes the hyperbolic tangent of
, . Values and limits include:>>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> tanh(0) 0.0 >>> tanh(1) 0.7615941559557648881194583 >>> tanh(-inf), tanh(inf) (-1.0, 1.0)
The hyperbolic tangent is an odd, sigmoidal function, similar to the inverse tangent and error function. Its Maclaurin series is:
>>> nprint(chop(taylor(tanh, 0, 5))) [0.0, 1.0, 0.0, -0.333333, 0.0, 0.133333]
Generalized to complex numbers, the hyperbolic tangent is essentially a tangent with a rotation
applied to the argument; more precisely, :>>> tanh(2+3j) (0.9653858790221331242784803 - 0.009884375038322493720314034j) >>> j*tan(3-2j) (0.9653858790221331242784803 - 0.009884375038322493720314034j)