matplotlib.scale
¶
Scales define the distribution of data values on an axis, e.g. a log scaling.
They are attached to an Axis
and hold a Transform
, which is
responsible for the actual data transformation.
See also axes.Axes.set_xscale
and the scales examples in the documentation.
-
class
matplotlib.scale.
FuncScale
(axis, functions)[source]¶ Bases:
matplotlib.scale.ScaleBase
Provide an arbitrary scale with user-supplied function for the axis.
Parameters: - axis
Axis
The axis for the scale.
- functions(callable, callable)
two-tuple of the forward and inverse functions for the scale. The forward function must be monotonic.
Both functions must have the signature:
def forward(values: array-like) -> array-like
-
get_transform
()[source]¶ Return the
FuncTransform
associated with this scale.
-
name
= 'function'¶
- axis
-
class
matplotlib.scale.
FuncScaleLog
(axis, functions, base=10)[source]¶ Bases:
matplotlib.scale.LogScale
Provide an arbitrary scale with user-supplied function for the axis and then put on a logarithmic axes.
Parameters: - axis
matplotlib.axis.Axis
The axis for the scale.
- functions(callable, callable)
two-tuple of the forward and inverse functions for the scale. The forward function must be monotonic.
Both functions must have the signature:
def forward(values: array-like) -> array-like
- basefloat, default: 10
Logarithmic base of the scale.
-
property
base
¶
-
name
= 'functionlog'¶
- axis
-
class
matplotlib.scale.
FuncTransform
(forward, inverse)[source]¶ Bases:
matplotlib.transforms.Transform
A simple transform that takes and arbitrary function for the forward and inverse transform.
Parameters: - forwardcallable
The forward function for the transform. This function must have an inverse and, for best behavior, be monotonic. It must have the signature:
def forward(values: array-like) -> array-like
- inversecallable
The inverse of the forward function. Signature as
forward
.
-
has_inverse
= True¶
-
input_dims
= 1¶
-
inverted
()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable
= True¶
-
output_dims
= 1¶
-
transform_non_affine
(values)[source]¶ Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
class
matplotlib.scale.
InvertedLogTransform
(base)[source]¶ Bases:
matplotlib.transforms.Transform
Parameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse
= True¶
-
input_dims
= 1¶
-
inverted
()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable
= True¶
-
output_dims
= 1¶
-
transform_non_affine
(a)[source]¶ Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
class
matplotlib.scale.
InvertedSymmetricalLogTransform
(base, linthresh, linscale)[source]¶ Bases:
matplotlib.transforms.Transform
Parameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse
= True¶
-
input_dims
= 1¶
-
inverted
()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable
= True¶
-
output_dims
= 1¶
-
transform_non_affine
(a)[source]¶ Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
class
matplotlib.scale.
LinearScale
(axis, **kwargs)[source]¶ Bases:
matplotlib.scale.ScaleBase
The default linear scale.
-
get_transform
()[source]¶ Return the transform for linear scaling, which is just the
IdentityTransform
.
-
name
= 'linear'¶
-
-
class
matplotlib.scale.
LogScale
(axis, **kwargs)[source]¶ Bases:
matplotlib.scale.ScaleBase
A standard logarithmic scale. Care is taken to only plot positive values.
Parameters: - axis
Axis
The axis for the scale.
- basefloat, default: 10
The base of the logarithm.
- nonpositive{'clip', 'mask'}, default: 'clip'
Determines the behavior for non-positive values. They can either be masked as invalid, or clipped to a very small positive number.
- subssequence of int, default: None
Where to place the subticks between each major tick. For example, in a log10 scale,
[2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
-
property
InvertedLogTransform
¶
-
property
LogTransform
¶
-
property
base
¶
-
get_transform
()[source]¶ Return the
LogTransform
associated with this scale.
-
name
= 'log'¶
- axis
-
class
matplotlib.scale.
LogTransform
(base, nonpositive='clip')[source]¶ Bases:
matplotlib.transforms.Transform
Parameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse
= True¶
-
input_dims
= 1¶
-
inverted
()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable
= True¶
-
output_dims
= 1¶
-
transform_non_affine
(a)[source]¶ Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
class
matplotlib.scale.
LogisticTransform
(nonpositive='mask')[source]¶ Bases:
matplotlib.transforms.Transform
Parameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse
= True¶
-
input_dims
= 1¶
-
inverted
()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable
= True¶
-
output_dims
= 1¶
-
class
matplotlib.scale.
LogitScale
(axis, nonpositive='mask', *, one_half='\x0crac{1}{2}', use_overline=False)[source]¶ Bases:
matplotlib.scale.ScaleBase
Logit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
Parameters: - axis
matplotlib.axis.Axis
Currently unused.
- nonpositive{'mask', 'clip'}
Determines the behavior for values beyond the open interval ]0, 1[. They can either be masked as invalid, or clipped to a number very close to 0 or 1.
- use_overlinebool, default: False
Indicate the usage of survival notation (overline{x}) in place of standard notation (1-x) for probability close to one.
- one_halfstr, default: r"frac{1}{2}"
The string used for ticks formatter to represent 1/2.
-
get_transform
()[source]¶ Return the
LogitTransform
associated with this scale.
-
limit_range_for_scale
(vmin, vmax, minpos)[source]¶ Limit the domain to values between 0 and 1 (excluded).
-
name
= 'logit'¶
- axis
-
class
matplotlib.scale.
LogitTransform
(nonpositive='mask')[source]¶ Bases:
matplotlib.transforms.Transform
Parameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse
= True¶
-
input_dims
= 1¶
-
inverted
()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable
= True¶
-
output_dims
= 1¶
-
class
matplotlib.scale.
ScaleBase
(axis, **kwargs)[source]¶ Bases:
object
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
And optionally:
Construct a new scale.
Notes
The following note is for scale implementors.
For back-compatibility reasons, scales take an
Axis
object as first argument. However, this argument should not be used: a single scale object should be usable by multipleAxis
es at the same time.
-
class
matplotlib.scale.
SymmetricalLogScale
(axis, **kwargs)[source]¶ Bases:
matplotlib.scale.ScaleBase
The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).
Parameters: - basefloat, default: 10
The base of the logarithm.
- linthreshfloat, default: 2
Defines the range
(-x, x)
, within which the plot is linear. This avoids having the plot go to infinity around zero.- subssequence of int
Where to place the subticks between each major tick. For example, in a log10 scale:
[2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.- linscalefloat, optional
This allows the linear range
(-linthresh, linthresh)
to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when linscale == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range.
Construct a new scale.
Notes
The following note is for scale implementors.
For back-compatibility reasons, scales take an
Axis
object as first argument. However, this argument should not be used: a single scale object should be usable by multipleAxis
es at the same time.-
property
InvertedSymmetricalLogTransform
¶
-
property
SymmetricalLogTransform
¶
-
property
base
¶
-
get_transform
()[source]¶ Return the
SymmetricalLogTransform
associated with this scale.
-
property
linscale
¶
-
property
linthresh
¶
-
name
= 'symlog'¶
-
class
matplotlib.scale.
SymmetricalLogTransform
(base, linthresh, linscale)[source]¶ Bases:
matplotlib.transforms.Transform
Parameters: - shorthand_namestr
A string representing the "name" of the transform. The name carries no significance other than to improve the readability of
str(transform)
when DEBUG=True.
-
has_inverse
= True¶
-
input_dims
= 1¶
-
inverted
()[source]¶ Return the corresponding inverse transformation.
It holds
x == self.inverted().transform(self.transform(x))
.The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
-
is_separable
= True¶
-
output_dims
= 1¶
-
transform_non_affine
(a)[source]¶ Apply only the non-affine part of this transformation.
transform(values)
is always equivalent totransform_affine(transform_non_affine(values))
.In non-affine transformations, this is generally equivalent to
transform(values)
. In affine transformations, this is always a no-op.Parameters: - valuesarray
The input values as NumPy array of length
input_dims
or shape (N xinput_dims
).
Returns: - array
The output values as NumPy array of length
input_dims
or shape (N xoutput_dims
), depending on the input.
-
matplotlib.scale.
register_scale
(scale_class)[source]¶ Register a new kind of scale.
Parameters: - scale_classsubclass of
ScaleBase
The scale to register.
- scale_classsubclass of
-
matplotlib.scale.
scale_factory
(scale, axis, **kwargs)[source]¶ Return a scale class by name.
Parameters: - scale{'function', 'functionlog', 'linear', 'log', 'logit', 'symlog'}
- axis
matplotlib.axis.Axis