""" ========================== Tricontour Smooth Delaunay ========================== Demonstrates high-resolution tricontouring of a random set of points; a `matplotlib.tri.TriAnalyzer` is used to improve the plot quality. The initial data points and triangular grid for this demo are: - a set of random points is instantiated, inside [-1, 1] x [-1, 1] square - A Delaunay triangulation of these points is then computed, of which a random subset of triangles is masked out by the user (based on *init_mask_frac* parameter). This simulates invalidated data. The proposed generic procedure to obtain a high resolution contouring of such a data set is the following: 1. Compute an extended mask with a `matplotlib.tri.TriAnalyzer`, which will exclude badly shaped (flat) triangles from the border of the triangulation. Apply the mask to the triangulation (using set_mask). 2. Refine and interpolate the data using a `matplotlib.tri.UniformTriRefiner`. 3. Plot the refined data with `~.axes.Axes.tricontour`. """ from matplotlib.tri import Triangulation, TriAnalyzer, UniformTriRefiner import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np #----------------------------------------------------------------------------- # Analytical test function #----------------------------------------------------------------------------- def experiment_res(x, y): """An analytic function representing experiment results.""" x = 2 * x r1 = np.sqrt((0.5 - x)**2 + (0.5 - y)**2) theta1 = np.arctan2(0.5 - x, 0.5 - y) r2 = np.sqrt((-x - 0.2)**2 + (-y - 0.2)**2) theta2 = np.arctan2(-x - 0.2, -y - 0.2) z = (4 * (np.exp((r1/10)**2) - 1) * 30 * np.cos(3 * theta1) + (np.exp((r2/10)**2) - 1) * 30 * np.cos(5 * theta2) + 2 * (x**2 + y**2)) return (np.max(z) - z) / (np.max(z) - np.min(z)) #----------------------------------------------------------------------------- # Generating the initial data test points and triangulation for the demo #----------------------------------------------------------------------------- # User parameters for data test points # Number of test data points, tested from 3 to 5000 for subdiv=3 n_test = 200 # Number of recursive subdivisions of the initial mesh for smooth plots. # Values >3 might result in a very high number of triangles for the refine # mesh: new triangles numbering = (4**subdiv)*ntri subdiv = 3 # Float > 0. adjusting the proportion of (invalid) initial triangles which will # be masked out. Enter 0 for no mask. init_mask_frac = 0.0 # Minimum circle ratio - border triangles with circle ratio below this will be # masked if they touch a border. Suggested value 0.01; use -1 to keep all # triangles. min_circle_ratio = .01 # Random points random_gen = np.random.RandomState(seed=19680801) x_test = random_gen.uniform(-1., 1., size=n_test) y_test = random_gen.uniform(-1., 1., size=n_test) z_test = experiment_res(x_test, y_test) # meshing with Delaunay triangulation tri = Triangulation(x_test, y_test) ntri = tri.triangles.shape[0] # Some invalid data are masked out mask_init = np.zeros(ntri, dtype=bool) masked_tri = random_gen.randint(0, ntri, int(ntri * init_mask_frac)) mask_init[masked_tri] = True tri.set_mask(mask_init) #----------------------------------------------------------------------------- # Improving the triangulation before high-res plots: removing flat triangles #----------------------------------------------------------------------------- # masking badly shaped triangles at the border of the triangular mesh. mask = TriAnalyzer(tri).get_flat_tri_mask(min_circle_ratio) tri.set_mask(mask) # refining the data refiner = UniformTriRefiner(tri) tri_refi, z_test_refi = refiner.refine_field(z_test, subdiv=subdiv) # analytical 'results' for comparison z_expected = experiment_res(tri_refi.x, tri_refi.y) # for the demo: loading the 'flat' triangles for plot flat_tri = Triangulation(x_test, y_test) flat_tri.set_mask(~mask) #----------------------------------------------------------------------------- # Now the plots #----------------------------------------------------------------------------- # User options for plots plot_tri = True # plot of base triangulation plot_masked_tri = True # plot of excessively flat excluded triangles plot_refi_tri = False # plot of refined triangulation plot_expected = False # plot of analytical function values for comparison # Graphical options for tricontouring levels = np.arange(0., 1., 0.025) cmap = cm.get_cmap(name='Blues', lut=None) fig, ax = plt.subplots() ax.set_aspect('equal') ax.set_title("Filtering a Delaunay mesh\n" "(application to high-resolution tricontouring)") # 1) plot of the refined (computed) data contours: ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap, linewidths=[2.0, 0.5, 1.0, 0.5]) # 2) plot of the expected (analytical) data contours (dashed): if plot_expected: ax.tricontour(tri_refi, z_expected, levels=levels, cmap=cmap, linestyles='--') # 3) plot of the fine mesh on which interpolation was done: if plot_refi_tri: ax.triplot(tri_refi, color='0.97') # 4) plot of the initial 'coarse' mesh: if plot_tri: ax.triplot(tri, color='0.7') # 4) plot of the unvalidated triangles from naive Delaunay Triangulation: if plot_masked_tri: ax.triplot(flat_tri, color='red') plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions, methods, classes and modules is shown # in this example: import matplotlib matplotlib.axes.Axes.tricontour matplotlib.pyplot.tricontour matplotlib.axes.Axes.tricontourf matplotlib.pyplot.tricontourf matplotlib.axes.Axes.triplot matplotlib.pyplot.triplot matplotlib.tri matplotlib.tri.Triangulation matplotlib.tri.TriAnalyzer matplotlib.tri.UniformTriRefiner