""" ======================= Colormap Normalizations ======================= Demonstration of using norm to map colormaps onto data in non-linear ways. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors ############################################################################### # Lognorm: Instead of pcolor log10(Z1) you can have colorbars that have # the exponential labels using a norm. N = 100 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] # A low hump with a spike coming out of the top. Needs to have # z/colour axis on a log scale so we see both hump and spike. linear # scale only shows the spike. Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2) Z = Z1 + 50 * Z2 fig, ax = plt.subplots(2, 1) pcm = ax[0].pcolor(X, Y, Z, norm=colors.LogNorm(vmin=Z.min(), vmax=Z.max()), cmap='PuBu_r') fig.colorbar(pcm, ax=ax[0], extend='max') pcm = ax[1].pcolor(X, Y, Z, cmap='PuBu_r') fig.colorbar(pcm, ax=ax[1], extend='max') ############################################################################### # PowerNorm: Here a power-law trend in X partially obscures a rectified # sine wave in Y. We can remove the power law using a PowerNorm. X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)] Z1 = (1 + np.sin(Y * 10.)) * X**2 fig, ax = plt.subplots(2, 1) pcm = ax[0].pcolormesh(X, Y, Z1, norm=colors.PowerNorm(gamma=1. / 2.), cmap='PuBu_r') fig.colorbar(pcm, ax=ax[0], extend='max') pcm = ax[1].pcolormesh(X, Y, Z1, cmap='PuBu_r') fig.colorbar(pcm, ax=ax[1], extend='max') ############################################################################### # SymLogNorm: two humps, one negative and one positive, The positive # with 5-times the amplitude. Linearly, you cannot see detail in the # negative hump. Here we logarithmically scale the positive and # negative data separately. # # Note that colorbar labels do not come out looking very good. X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = 5 * np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots(2, 1) pcm = ax[0].pcolormesh(X, Y, Z1, norm=colors.SymLogNorm(linthresh=0.03, linscale=0.03, vmin=-1.0, vmax=1.0, base=10), cmap='RdBu_r') fig.colorbar(pcm, ax=ax[0], extend='both') pcm = ax[1].pcolormesh(X, Y, Z1, cmap='RdBu_r', vmin=-np.max(Z1)) fig.colorbar(pcm, ax=ax[1], extend='both') ############################################################################### # Custom Norm: An example with a customized normalization. This one # uses the example above, and normalizes the negative data differently # from the positive. X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 # Example of making your own norm. Also see matplotlib.colors. # From Joe Kington: This one gives two different linear ramps: class MidpointNormalize(colors.Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ##### fig, ax = plt.subplots(2, 1) pcm = ax[0].pcolormesh(X, Y, Z, norm=MidpointNormalize(midpoint=0.), cmap='RdBu_r') fig.colorbar(pcm, ax=ax[0], extend='both') pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z)) fig.colorbar(pcm, ax=ax[1], extend='both') ############################################################################### # BoundaryNorm: For this one you provide the boundaries for your colors, # and the Norm puts the first color in between the first pair, the # second color between the second pair, etc. fig, ax = plt.subplots(3, 1, figsize=(8, 8)) ax = ax.flatten() # even bounds gives a contour-like effect bounds = np.linspace(-1, 1, 10) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) pcm = ax[0].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r') fig.colorbar(pcm, ax=ax[0], extend='both', orientation='vertical') # uneven bounds changes the colormapping: bounds = np.array([-0.25, -0.125, 0, 0.5, 1]) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) pcm = ax[1].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r') fig.colorbar(pcm, ax=ax[1], extend='both', orientation='vertical') pcm = ax[2].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z1)) fig.colorbar(pcm, ax=ax[2], extend='both', orientation='vertical') plt.show()