""" ======================== Spectrum Representations ======================== The plots show different spectrum representations of a sine signal with additive noise. A (frequency) spectrum of a discrete-time signal is calculated by utilizing the fast Fourier transform (FFT). """ import matplotlib.pyplot as plt import numpy as np np.random.seed(0) dt = 0.01 # sampling interval Fs = 1 / dt # sampling frequency t = np.arange(0, 10, dt) # generate noise: nse = np.random.randn(len(t)) r = np.exp(-t / 0.05) cnse = np.convolve(nse, r) * dt cnse = cnse[:len(t)] s = 0.1 * np.sin(4 * np.pi * t) + cnse # the signal fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(7, 7)) # plot time signal: axs[0, 0].set_title("Signal") axs[0, 0].plot(t, s, color='C0') axs[0, 0].set_xlabel("Time") axs[0, 0].set_ylabel("Amplitude") # plot different spectrum types: axs[1, 0].set_title("Magnitude Spectrum") axs[1, 0].magnitude_spectrum(s, Fs=Fs, color='C1') axs[1, 1].set_title("Log. Magnitude Spectrum") axs[1, 1].magnitude_spectrum(s, Fs=Fs, scale='dB', color='C1') axs[2, 0].set_title("Phase Spectrum ") axs[2, 0].phase_spectrum(s, Fs=Fs, color='C2') axs[2, 1].set_title("Angle Spectrum") axs[2, 1].angle_spectrum(s, Fs=Fs, color='C2') axs[0, 1].remove() # don't display empty ax fig.tight_layout() plt.show()