""" ============================ pcolormesh grids and shading ============================ `.axes.Axes.pcolormesh` and `~.axes.Axes.pcolor` have a few options for how grids are laid out and the shading between the grid points. Generally, if *Z* has shape *(M, N)* then the grid *X* and *Y* can be specified with either shape *(M+1, N+1)* or *(M, N)*, depending on the argument for the ``shading`` keyword argument. Note that below we specify vectors *x* as either length N or N+1 and *y* as length M or M+1, and `~.axes.Axes.pcolormesh` internally makes the mesh matrices *X* and *Y* from the input vectors. """ import matplotlib import matplotlib.pyplot as plt import numpy as np ############################################################################### # Flat Shading # ------------ # # The grid specification with the least assumptions is ``shading='flat'`` # and if the grid is one larger than the data in each dimension, i.e. has shape # *(M+1, N+1)*. In that case *X* and *Y* specify the corners of quadrilaterals # that are colored with the values in *Z*. Here we specify the edges of the # *(3, 5)* quadrilaterals with *X* and *Y* that are *(4, 6)*. nrows = 3 ncols = 5 Z = np.arange(nrows * ncols).reshape(nrows, ncols) x = np.arange(ncols + 1) y = np.arange(nrows + 1) fig, ax = plt.subplots() ax.pcolormesh(x, y, Z, shading='flat', vmin=Z.min(), vmax=Z.max()) def _annotate(ax, x, y, title): # this all gets repeated below: X, Y = np.meshgrid(x, y) ax.plot(X.flat, Y.flat, 'o', color='m') ax.set_xlim(-0.7, 5.2) ax.set_ylim(-0.7, 3.2) ax.set_title(title) _annotate(ax, x, y, "shading='flat'") ############################################################################### # Flat Shading, same shape grid # ----------------------------- # # Often, however, data is provided where *X* and *Y* match the shape of *Z*. # As of Matplotlib v3.3, ``shading='flat'`` is deprecated when this is the # case, a warning is raised, and the last row and column of *Z* are dropped. # This dropping of the last row and column is what Matplotlib did silently # previous to v3.3, and is compatible with what Matlab does. x = np.arange(ncols) # note *not* ncols + 1 as before y = np.arange(nrows) fig, ax = plt.subplots() ax.pcolormesh(x, y, Z, shading='flat', vmin=Z.min(), vmax=Z.max()) _annotate(ax, x, y, "shading='flat': X, Y, C same shape") ############################################################################### # Nearest Shading, same shape grid # -------------------------------- # # Usually, dropping a row and column of data is not what the user means when # they make *X*, *Y* and *Z* all the same shape. For this case, Matplotlib # allows ``shading='nearest'`` and centers the colored quadrilaterals on the # grid points. # # If a grid that is not the correct shape is passed with ``shading='nearest'`` # an error is raised. fig, ax = plt.subplots() ax.pcolormesh(x, y, Z, shading='nearest', vmin=Z.min(), vmax=Z.max()) _annotate(ax, x, y, "shading='nearest'") ############################################################################### # Auto Shading # ------------ # # It's possible that the user would like the code to automatically choose which # to use, in this case ``shading='auto'`` will decide whether to use 'flat' or # 'nearest' shading based on the shapes of *X*, *Y* and *Z*. fig, axs = plt.subplots(2, 1, constrained_layout=True) ax = axs[0] x = np.arange(ncols) y = np.arange(nrows) ax.pcolormesh(x, y, Z, shading='auto', vmin=Z.min(), vmax=Z.max()) _annotate(ax, x, y, "shading='auto'; X, Y, Z: same shape (nearest)") ax = axs[1] x = np.arange(ncols + 1) y = np.arange(nrows + 1) ax.pcolormesh(x, y, Z, shading='auto', vmin=Z.min(), vmax=Z.max()) _annotate(ax, x, y, "shading='auto'; X, Y one larger than Z (flat)") ############################################################################### # Gouraud Shading # --------------- # # `Gouraud shading `_ can also # be specified, where the color in the quadrilaterals is linearly interpolated # between the grid points. The shapes of *X*, *Y*, *Z* must be the same. fig, ax = plt.subplots(constrained_layout=True) x = np.arange(ncols) y = np.arange(nrows) ax.pcolormesh(x, y, Z, shading='gouraud', vmin=Z.min(), vmax=Z.max()) _annotate(ax, x, y, "shading='gouraud'; X, Y same shape as Z") plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions and methods is shown in this example: matplotlib.axes.Axes.pcolormesh matplotlib.pyplot.pcolormesh