# -*- coding: utf-8 -*-
#
# Copyright © 2009-2010 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/__init__.py for details)
# pylint: disable=C0103
"""
guiqwt.histogram
----------------
The `histogram` module provides histogram related objects:
* :py:class:`guiqwt.histogram.HistogramItem`: an histogram plot item
* :py:class:`guiqwt.histogram.ContrastAdjustment`: the `contrast
adjustment panel`
* :py:class:`guiqwt.histogram.LevelsHistogram`: a curve plotting widget
used by the `contrast adjustment panel` to compute, manipulate and
display the image levels histogram
``HistogramItem`` objects are plot items (derived from QwtPlotItem) that may
be displayed on a 2D plotting widget like :py:class:`guiqwt.curve.CurvePlot`
or :py:class:`guiqwt.image.ImagePlot`.
Example
~~~~~~~
Simple histogram plotting example:
.. literalinclude:: /../guiqwt/tests/histogram.py
Reference
~~~~~~~~~
.. autoclass:: HistogramItem
:members:
:inherited-members:
.. autoclass:: ContrastAdjustment
:members:
:inherited-members:
.. autoclass:: LevelsHistogram
:members:
:inherited-members:
"""
import weakref
import numpy as np
from qtpy.QtCore import Qt, Signal
from qtpy.QtWidgets import QHBoxLayout, QVBoxLayout, QToolBar
from guidata.dataset.datatypes import DataSet
from guidata.dataset.dataitems import FloatItem
from guidata.utils import assert_interfaces_valid, update_dataset
from guidata.configtools import get_icon, get_image_layout
from guidata.qthelpers import add_actions, create_action
# Local imports
from guiqwt.transitional import QwtPlotCurve
from guiqwt.config import CONF, _
from guiqwt.interfaces import IBasePlotItem, IHistDataSource, IVoiImageItemType, IPanel
from guiqwt.panels import PanelWidget, ID_CONTRAST
from guiqwt.curve import CurveItem, CurvePlot
from guiqwt.image import ImagePlot
from guiqwt.styles import HistogramParam, CurveParam
from guiqwt.shapes import XRangeSelection
from guiqwt.tools import SelectTool, BasePlotMenuTool, SelectPointTool, AntiAliasingTool
from guiqwt.plot import PlotManager
class HistDataSource(object):
"""
An objects that provides an Histogram data source interface
to a simple numpy array of data
"""
__implements__ = (IHistDataSource,)
def __init__(self, data):
self.data = data
def get_histogram(self, nbins):
"""Returns the histogram computed for nbins bins"""
return np.histogram(self.data, nbins)
assert_interfaces_valid(HistDataSource)
def hist_range_threshold(hist, bin_edges, percent):
hist = np.concatenate((hist, [0]))
threshold = 0.5 * percent / 100 * hist.sum()
i_bin_min = np.cumsum(hist).searchsorted(threshold)
i_bin_max = -1 - np.cumsum(np.flipud(hist)).searchsorted(threshold)
return bin_edges[i_bin_min], bin_edges[i_bin_max]
def lut_range_threshold(item, bins, percent):
hist, bin_edges = item.get_histogram(bins)
return hist_range_threshold(hist, bin_edges, percent)
[docs]class HistogramItem(CurveItem):
"""A Qwt item representing histogram data"""
__implements__ = (IBasePlotItem,)
def __init__(self, curveparam=None, histparam=None, keep_weakref=False):
self.hist_count = None
self.hist_bins = None
self.bins = None
self.old_bins = None
self.source = None
self.logscale = None
self.old_logscale = None
self.keep_weakref = keep_weakref
if curveparam is None:
curveparam = CurveParam(_("Curve"), icon="curve.png")
curveparam.curvestyle = "Steps"
if histparam is None:
self.histparam = HistogramParam(title=_("Histogram"), icon="histogram.png")
else:
self.histparam = histparam
CurveItem.__init__(self, curveparam)
self.setCurveAttribute(QwtPlotCurve.Inverted)
[docs] def set_hist_source(self, src):
"""
Set histogram source
*source*:
Object with method `get_histogram`, e.g. objects derived from
:py:data:`guiqwt.image.ImageItem`
"""
if self.keep_weakref:
self.source = weakref.ref(src)
else:
self.source = src
self.update_histogram()
[docs] def get_hist_source(self):
"""
Return histogram source
*source*:
Object with method `get_histogram`, e.g. objects derived from
:py:data:`guiqwt.image.ImageItem`
"""
if self.source is not None:
if self.keep_weakref:
return self.source()
return self.source
[docs] def set_hist_data(self, data):
"""Set histogram data"""
self.set_hist_source(HistDataSource(data))
[docs] def set_logscale(self, state):
"""Sets whether we use a logarithm or linear scale
for the histogram counts"""
self.logscale = state
self.update_histogram()
[docs] def get_logscale(self):
"""Returns the status of the scale"""
return self.logscale
def set_bins(self, n_bins):
self.bins = n_bins
self.update_histogram()
def get_bins(self):
return self.bins
def compute_histogram(self):
return self.get_hist_source().get_histogram(self.bins)
def update_histogram(self):
if self.get_hist_source() is None:
return
hist, bin_edges = self.compute_histogram()
hist = np.concatenate((hist, [0]))
if self.logscale:
hist = np.log(hist + 1)
self.set_data(bin_edges, hist)
# Autoscale only if logscale/bins have changed
if self.bins != self.old_bins or self.logscale != self.old_logscale:
if self.plot():
self.plot().do_autoscale()
self.old_bins = self.bins
self.old_logscale = self.logscale
plot = self.plot()
if plot is not None:
plot.do_autoscale(replot=True)
def update_params(self):
self.histparam.update_hist(self)
CurveItem.update_params(self)
def get_item_parameters(self, itemparams):
CurveItem.get_item_parameters(self, itemparams)
itemparams.add("HistogramParam", self, self.histparam)
def set_item_parameters(self, itemparams):
update_dataset(
self.histparam, itemparams.get("HistogramParam"), visible_only=True
)
self.histparam.update_hist(self)
CurveItem.set_item_parameters(self, itemparams)
assert_interfaces_valid(HistogramItem)
[docs]class LevelsHistogram(CurvePlot):
"""Image levels histogram widget"""
#: Signal emitted by LevelsHistogram when LUT range was changed
SIG_VOI_CHANGED = Signal()
def __init__(self, parent=None):
super(LevelsHistogram, self).__init__(
parent=parent, title="", section="histogram"
)
self.antialiased = False
# a dict of dict : plot -> selected items -> HistogramItem
self._tracked_items = {}
self.curveparam = CurveParam(_("Curve"), icon="curve.png")
self.curveparam.read_config(CONF, "histogram", "curve")
self.histparam = HistogramParam(_("Histogram"), icon="histogram.png")
self.histparam.logscale = False
self.histparam.n_bins = 256
self.range = XRangeSelection(0, 1)
self.range_mono_color = self.range.shapeparam.sel_line.color
self.range_multi_color = CONF.get("histogram", "range/multi/color", "red")
self.add_item(self.range, z=5)
self.SIG_RANGE_CHANGED.connect(self.range_changed)
self.set_active_item(self.range)
self.setMinimumHeight(80)
self.setAxisMaxMajor(self.Y_LEFT, 5)
self.setAxisMaxMinor(self.Y_LEFT, 0)
if parent is None:
self.set_axis_title("bottom", "Levels")
def connect_plot(self, plot):
if not isinstance(plot, ImagePlot):
# Connecting only to image plot widgets (allow mixing image and
# curve widgets for the same plot manager -- e.g. in pyplot)
return
self.SIG_VOI_CHANGED.connect(plot.notify_colormap_changed)
plot.SIG_ITEM_SELECTION_CHANGED.connect(self.selection_changed)
plot.SIG_ITEM_REMOVED.connect(self.item_removed)
plot.SIG_ACTIVE_ITEM_CHANGED.connect(self.active_item_changed)
def tracked_items_gen(self):
for plot, items in list(self._tracked_items.items()):
for item in list(items.items()):
yield item # tuple item,curve
def __del_known_items(self, known_items, items):
del_curves = []
for item in list(known_items.keys()):
if item not in items:
curve = known_items.pop(item)
del_curves.append(curve)
self.del_items(del_curves)
def selection_changed(self, plot):
items = plot.get_selected_items(item_type=IVoiImageItemType)
known_items = self._tracked_items.setdefault(plot, {})
if items:
self.__del_known_items(known_items, items)
if len(items) == 1:
# Removing any cached item for other plots
for other_plot, _items in list(self._tracked_items.items()):
if other_plot is not plot:
if not other_plot.get_selected_items(
item_type=IVoiImageItemType
):
other_known_items = self._tracked_items[other_plot]
self.__del_known_items(other_known_items, [])
else:
# if all items are deselected we keep the last known
# selection (for one plot only)
for other_plot, _items in list(self._tracked_items.items()):
if other_plot.get_selected_items(item_type=IVoiImageItemType):
self.__del_known_items(known_items, [])
break
for item in items:
if item not in known_items:
curve = HistogramItem(
self.curveparam, self.histparam, keep_weakref=True
)
curve.set_hist_source(item)
self.add_item(curve, z=0)
known_items[item] = curve
nb_selected = len(list(self.tracked_items_gen()))
if not nb_selected:
self.replot()
return
self.curveparam.shade = 1.0 / nb_selected
for item, curve in self.tracked_items_gen():
self.curveparam.update_curve(curve)
self.histparam.update_hist(curve)
self.active_item_changed(plot)
# Rescaling histogram plot axes for better visibility
ymax = None
for item in known_items:
curve = known_items[item]
_x, y = curve.get_data()
ymax0 = y.mean() + 3 * y.std()
if ymax is None or ymax0 > ymax:
ymax = ymax0
ymin, _ymax = self.get_axis_limits("left")
if ymax is not None:
self.set_axis_limits("left", ymin, ymax)
self.replot()
def item_removed(self, item):
for plot, items in list(self._tracked_items.items()):
if item in items:
try:
self.del_item(item)
except ValueError:
pass # Histogram has not yet been created
items.pop(item)
break
def active_item_changed(self, plot):
items = plot.get_selected_items(item_type=IVoiImageItemType)
if not items:
# XXX: workaround
return
active = plot.get_last_active_item(IVoiImageItemType)
if active:
active_range = active.get_lut_range()
else:
active_range = None
multiple_ranges = False
for item, curve in self.tracked_items_gen():
if active_range != item.get_lut_range():
multiple_ranges = True
if active_range is not None:
_m, _M = active_range
self.set_range_style(multiple_ranges)
self.range.set_range(_m, _M, dosignal=False)
self.replot()
def set_range_style(self, multiple_ranges):
if multiple_ranges:
self.range.shapeparam.sel_line.color = self.range_multi_color
else:
self.range.shapeparam.sel_line.color = self.range_mono_color
self.range.shapeparam.update_range(self.range)
def set_range(self, _min, _max):
if _min < _max:
self.set_range_style(False)
self.range.set_range(_min, _max)
self.replot()
return True
else:
# Range was not changed
return False
def range_changed(self, _rangesel, _min, _max):
for item, curve in self.tracked_items_gen():
item.set_lut_range([_min, _max])
self.SIG_VOI_CHANGED.emit()
[docs] def set_full_range(self):
"""Set range bounds to image min/max levels"""
_min = _max = None
for item, curve in self.tracked_items_gen():
imin, imax = item.get_lut_range_full()
if _min is None or _min > imin:
_min = imin
if _max is None or _max < imax:
_max = imax
if _min is not None:
self.set_range(_min, _max)
def apply_min_func(self, item, curve, min):
_min, _max = item.get_lut_range()
return min, _max
def apply_max_func(self, item, curve, max):
_min, _max = item.get_lut_range()
return _min, max
def reduce_range_func(self, item, curve, percent):
return lut_range_threshold(item, curve.bins, percent)
def apply_range_function(self, func, *args, **kwargs):
item = None
for item, curve in self.tracked_items_gen():
_min, _max = func(item, curve, *args, **kwargs)
item.set_lut_range([_min, _max])
self.SIG_VOI_CHANGED.emit()
if item is not None:
self.active_item_changed(item.plot())
[docs] def eliminate_outliers(self, percent):
"""
Eliminate outliers:
eliminate percent/2*N counts on each side of the histogram
(where N is the total count number)
"""
self.apply_range_function(self.reduce_range_func, percent)
def set_min(self, _min):
self.apply_range_function(self.apply_min_func, _min)
def set_max(self, _max):
self.apply_range_function(self.apply_max_func, _max)
class EliminateOutliersParam(DataSet):
percent = FloatItem(
_("Eliminate outliers") + " (%)", default=2.0, min=0.0, max=100.0 - 1e-6
)
[docs]class ContrastAdjustment(PanelWidget):
"""Contrast adjustment tool"""
__implements__ = (IPanel,)
PANEL_ID = ID_CONTRAST
PANEL_TITLE = _("Contrast adjustment tool")
PANEL_ICON = "contrast.png"
def __init__(self, parent=None):
super(ContrastAdjustment, self).__init__(parent)
self.local_manager = None # local manager for the histogram plot
self.manager = None # manager for the associated image plot
# Storing min/max markers for each active image
self.min_markers = {}
self.max_markers = {}
# Select point tools
self.min_select_tool = None
self.max_select_tool = None
style = "<span style='color: #444444'><b>%s</b></span>"
layout, _label = get_image_layout(
self.PANEL_ICON, style % self.PANEL_TITLE, alignment=Qt.AlignCenter
)
layout.setAlignment(Qt.AlignCenter)
vlayout = QVBoxLayout()
vlayout.addLayout(layout)
self.local_manager = PlotManager(self)
self.histogram = LevelsHistogram(parent)
vlayout.addWidget(self.histogram)
self.local_manager.add_plot(self.histogram)
hlayout = QHBoxLayout()
self.setLayout(hlayout)
hlayout.addLayout(vlayout)
self.toolbar = toolbar = QToolBar(self)
toolbar.setOrientation(Qt.Vertical)
# toolbar.setToolButtonStyle(Qt.ToolButtonTextBesideIcon)
hlayout.addWidget(toolbar)
# Add standard plot-related tools to the local manager
lman = self.local_manager
lman.add_tool(SelectTool)
lman.add_tool(BasePlotMenuTool, "item")
lman.add_tool(BasePlotMenuTool, "axes")
lman.add_tool(BasePlotMenuTool, "grid")
lman.add_tool(AntiAliasingTool)
lman.get_default_tool().activate()
self.outliers_param = EliminateOutliersParam(self.PANEL_TITLE)
[docs] def register_panel(self, manager):
"""Register panel to plot manager"""
self.manager = manager
default_toolbar = self.manager.get_default_toolbar()
self.manager.add_toolbar(self.toolbar, "contrast")
self.manager.set_default_toolbar(default_toolbar)
self.setup_actions()
for plot in manager.get_plots():
self.histogram.connect_plot(plot)
def get_plot(self):
return self.manager.get_active_plot()
[docs] def closeEvent(self, event):
self.hide()
event.ignore()
def setup_actions(self):
fullrange_ac = create_action(
self,
_("Full range"),
icon=get_icon("full_range.png"),
triggered=self.histogram.set_full_range,
tip=_("Scale the image's display range " "according to data range"),
)
autorange_ac = create_action(
self,
_("Eliminate outliers"),
icon=get_icon("eliminate_outliers.png"),
triggered=self.eliminate_outliers,
tip=_(
"Eliminate levels histogram "
"outliers and scale the image's "
"display range accordingly"
),
)
add_actions(self.toolbar, [fullrange_ac, autorange_ac])
def eliminate_outliers(self):
def apply(param):
self.histogram.eliminate_outliers(param.percent)
if self.outliers_param.edit(self, apply=apply):
apply(self.outliers_param)
def apply_min_selection(self, tool):
item = self.get_plot().get_last_active_item(IVoiImageItemType)
point = self.min_select_tool.get_coordinates()
z = item.get_data(*point)
self.histogram.set_min(z)
def apply_max_selection(self, tool):
item = self.get_plot().get_last_active_item(IVoiImageItemType)
point = self.max_select_tool.get_coordinates()
z = item.get_data(*point)
self.histogram.set_max(z)
[docs] def set_range(self, _min, _max):
"""Set contrast panel's histogram range"""
self.histogram.set_range(_min, _max)
# Update the levels histogram in case active item data has changed:
self.histogram.selection_changed(self.get_plot())
assert_interfaces_valid(ContrastAdjustment)