Source code for guiqwt.histogram

# -*- coding: utf-8 -*-
# Copyright © 2009-2010 CEA
# Pierre Raybaut
# Licensed under the terms of the CECILL License
# (see guiqwt/ for details)

# pylint: disable=C0103


The `histogram` module provides histogram related objects:
    * :py:class:`guiqwt.histogram.HistogramItem`: an histogram plot item
    * :py:class:`guiqwt.histogram.ContrastAdjustment`: the `contrast 
      adjustment panel`
    * :py:class:`guiqwt.histogram.LevelsHistogram`: a curve plotting widget 
      used by the `contrast adjustment panel` to compute, manipulate and 
      display the image levels histogram

``HistogramItem`` objects are plot items (derived from QwtPlotItem) that may 
be displayed on a 2D plotting widget like :py:class:`guiqwt.curve.CurvePlot` 
or :py:class:`guiqwt.image.ImagePlot`.


Simple histogram plotting example:

.. literalinclude:: /../guiqwt/tests/


.. autoclass:: HistogramItem
.. autoclass:: ContrastAdjustment
.. autoclass:: LevelsHistogram

import weakref
import numpy as np
from qtpy.QtCore import Qt, Signal
from qtpy.QtWidgets import QHBoxLayout, QVBoxLayout, QToolBar

from guidata.dataset.datatypes import DataSet
from guidata.dataset.dataitems import FloatItem
from guidata.utils import assert_interfaces_valid, update_dataset
from guidata.configtools import get_icon, get_image_layout
from guidata.qthelpers import add_actions, create_action

# Local imports
from guiqwt.transitional import QwtPlotCurve
from guiqwt.config import CONF, _
from guiqwt.interfaces import IBasePlotItem, IHistDataSource, IVoiImageItemType, IPanel
from guiqwt.panels import PanelWidget, ID_CONTRAST
from guiqwt.curve import CurveItem, CurvePlot
from guiqwt.image import ImagePlot
from guiqwt.styles import HistogramParam, CurveParam
from guiqwt.shapes import XRangeSelection
from import SelectTool, BasePlotMenuTool, SelectPointTool, AntiAliasingTool
from guiqwt.plot import PlotManager

class HistDataSource(object):
    An objects that provides an Histogram data source interface
    to a simple numpy array of data

    __implements__ = (IHistDataSource,)

    def __init__(self, data): = data

    def get_histogram(self, nbins):
        """Returns the histogram computed for nbins bins"""
        return np.histogram(, nbins)


def hist_range_threshold(hist, bin_edges, percent):
    hist = np.concatenate((hist, [0]))
    threshold = 0.5 * percent / 100 * hist.sum()
    i_bin_min = np.cumsum(hist).searchsorted(threshold)
    i_bin_max = -1 - np.cumsum(np.flipud(hist)).searchsorted(threshold)
    return bin_edges[i_bin_min], bin_edges[i_bin_max]

def lut_range_threshold(item, bins, percent):
    hist, bin_edges = item.get_histogram(bins)
    return hist_range_threshold(hist, bin_edges, percent)

[docs]class HistogramItem(CurveItem): """A Qwt item representing histogram data""" __implements__ = (IBasePlotItem,) def __init__(self, curveparam=None, histparam=None): self.hist_count = None self.hist_bins = None self.bins = None self.old_bins = None self.source = None self.logscale = None self.old_logscale = None if curveparam is None: curveparam = CurveParam(_("Curve"), icon="curve.png") curveparam.curvestyle = "Steps" if histparam is None: self.histparam = HistogramParam(title=_("Histogram"), icon="histogram.png") else: self.histparam = histparam CurveItem.__init__(self, curveparam) self.setCurveAttribute(QwtPlotCurve.Inverted)
[docs] def set_hist_source(self, src): """ Set histogram source *source*: Object with method `get_histogram`, e.g. objects derived from :py:data:`guiqwt.image.ImageItem` """ self.source = weakref.ref(src) self.update_histogram()
[docs] def get_hist_source(self): """ Return histogram source *source*: Object with method `get_histogram`, e.g. objects derived from :py:data:`guiqwt.image.ImageItem` """ if self.source is not None: return self.source()
[docs] def set_hist_data(self, data): """Set histogram data""" self.set_hist_source(HistDataSource(data))
[docs] def set_logscale(self, state): """Sets whether we use a logarithm or linear scale for the histogram counts""" self.logscale = state self.update_histogram()
[docs] def get_logscale(self): """Returns the status of the scale""" return self.logscale
def set_bins(self, n_bins): self.bins = n_bins self.update_histogram() def get_bins(self): return self.bins def compute_histogram(self): return self.get_hist_source().get_histogram(self.bins) def update_histogram(self): if self.get_hist_source() is None: return hist, bin_edges = self.compute_histogram() hist = np.concatenate((hist, [0])) if self.logscale: hist = np.log(hist + 1) self.set_data(bin_edges, hist) # Autoscale only if logscale/bins have changed if self.bins != self.old_bins or self.logscale != self.old_logscale: if self.plot(): self.plot().do_autoscale() self.old_bins = self.bins self.old_logscale = self.logscale plot = self.plot() if plot is not None: plot.do_autoscale(replot=True) def update_params(self): self.histparam.update_hist(self) CurveItem.update_params(self) def get_item_parameters(self, itemparams): CurveItem.get_item_parameters(self, itemparams) itemparams.add("HistogramParam", self, self.histparam) def set_item_parameters(self, itemparams): update_dataset( self.histparam, itemparams.get("HistogramParam"), visible_only=True ) self.histparam.update_hist(self) CurveItem.set_item_parameters(self, itemparams)
[docs]class LevelsHistogram(CurvePlot): """Image levels histogram widget""" #: Signal emitted by LevelsHistogram when LUT range was changed SIG_VOI_CHANGED = Signal() def __init__(self, parent=None): super(LevelsHistogram, self).__init__( parent=parent, title="", section="histogram" ) self.antialiased = False # a dict of dict : plot -> selected items -> HistogramItem self._tracked_items = {} self.curveparam = CurveParam(_("Curve"), icon="curve.png") self.curveparam.read_config(CONF, "histogram", "curve") self.histparam = HistogramParam(_("Histogram"), icon="histogram.png") self.histparam.logscale = False self.histparam.n_bins = 256 self.range = XRangeSelection(0, 1) self.range_mono_color = self.range.shapeparam.sel_line.color self.range_multi_color = CONF.get("histogram", "range/multi/color", "red") self.add_item(self.range, z=5) self.SIG_RANGE_CHANGED.connect(self.range_changed) self.set_active_item(self.range) self.setMinimumHeight(80) self.setAxisMaxMajor(self.Y_LEFT, 5) self.setAxisMaxMinor(self.Y_LEFT, 0) if parent is None: self.set_axis_title("bottom", "Levels") def connect_plot(self, plot): if not isinstance(plot, ImagePlot): # Connecting only to image plot widgets (allow mixing image and # curve widgets for the same plot manager -- e.g. in pyplot) return self.SIG_VOI_CHANGED.connect(plot.notify_colormap_changed) plot.SIG_ITEM_SELECTION_CHANGED.connect(self.selection_changed) plot.SIG_ITEM_REMOVED.connect(self.item_removed) plot.SIG_ACTIVE_ITEM_CHANGED.connect(self.active_item_changed) def tracked_items_gen(self): for plot, items in list(self._tracked_items.items()): for item in list(items.items()): yield item # tuple item,curve def __del_known_items(self, known_items, items): del_curves = [] for item in list(known_items.keys()): if item not in items: curve = known_items.pop(item) del_curves.append(curve) self.del_items(del_curves) def selection_changed(self, plot): items = plot.get_selected_items(item_type=IVoiImageItemType) known_items = self._tracked_items.setdefault(plot, {}) if items: self.__del_known_items(known_items, items) if len(items) == 1: # Removing any cached item for other plots for other_plot, _items in list(self._tracked_items.items()): if other_plot is not plot: if not other_plot.get_selected_items( item_type=IVoiImageItemType ): other_known_items = self._tracked_items[other_plot] self.__del_known_items(other_known_items, []) else: # if all items are deselected we keep the last known # selection (for one plot only) for other_plot, _items in list(self._tracked_items.items()): if other_plot.get_selected_items(item_type=IVoiImageItemType): self.__del_known_items(known_items, []) break for item in items: if item not in known_items: curve = HistogramItem(self.curveparam, self.histparam) curve.set_hist_source(item) self.add_item(curve, z=0) known_items[item] = curve nb_selected = len(list(self.tracked_items_gen())) if not nb_selected: self.replot() return self.curveparam.shade = 1.0 / nb_selected for item, curve in self.tracked_items_gen(): self.curveparam.update_curve(curve) self.histparam.update_hist(curve) self.active_item_changed(plot) # Rescaling histogram plot axes for better visibility ymax = None for item in known_items: curve = known_items[item] _x, y = curve.get_data() ymax0 = y.mean() + 3 * y.std() if ymax is None or ymax0 > ymax: ymax = ymax0 ymin, _ymax = self.get_axis_limits("left") if ymax is not None: self.set_axis_limits("left", ymin, ymax) self.replot() def item_removed(self, item): for plot, items in list(self._tracked_items.items()): if item in items: curve = items.pop(item) self.del_items([curve]) self.replot() break def active_item_changed(self, plot): items = plot.get_selected_items(item_type=IVoiImageItemType) if not items: # XXX: workaround return active = plot.get_last_active_item(IVoiImageItemType) if active: active_range = active.get_lut_range() else: active_range = None multiple_ranges = False for item, curve in self.tracked_items_gen(): if active_range != item.get_lut_range(): multiple_ranges = True if active_range is not None: _m, _M = active_range self.set_range_style(multiple_ranges) self.range.set_range(_m, _M, dosignal=False) self.replot() def set_range_style(self, multiple_ranges): if multiple_ranges: self.range.shapeparam.sel_line.color = self.range_multi_color else: self.range.shapeparam.sel_line.color = self.range_mono_color self.range.shapeparam.update_range(self.range) def set_range(self, _min, _max): if _min < _max: self.set_range_style(False) self.range.set_range(_min, _max) self.replot() return True else: # Range was not changed return False def range_changed(self, _rangesel, _min, _max): for item, curve in self.tracked_items_gen(): item.set_lut_range([_min, _max]) self.SIG_VOI_CHANGED.emit()
[docs] def set_full_range(self): """Set range bounds to image min/max levels""" _min = _max = None for item, curve in self.tracked_items_gen(): imin, imax = item.get_lut_range_full() if _min is None or _min > imin: _min = imin if _max is None or _max < imax: _max = imax if _min is not None: self.set_range(_min, _max)
def apply_min_func(self, item, curve, min): _min, _max = item.get_lut_range() return min, _max def apply_max_func(self, item, curve, max): _min, _max = item.get_lut_range() return _min, max def reduce_range_func(self, item, curve, percent): return lut_range_threshold(item, curve.bins, percent) def apply_range_function(self, func, *args, **kwargs): item = None for item, curve in self.tracked_items_gen(): _min, _max = func(item, curve, *args, **kwargs) item.set_lut_range([_min, _max]) self.SIG_VOI_CHANGED.emit() if item is not None: self.active_item_changed(item.plot())
[docs] def eliminate_outliers(self, percent): """ Eliminate outliers: eliminate percent/2*N counts on each side of the histogram (where N is the total count number) """ self.apply_range_function(self.reduce_range_func, percent)
def set_min(self, _min): self.apply_range_function(self.apply_min_func, _min) def set_max(self, _max): self.apply_range_function(self.apply_max_func, _max)
class EliminateOutliersParam(DataSet): percent = FloatItem( _("Eliminate outliers") + " (%)", default=2.0, min=0.0, max=100.0 - 1e-6 )
[docs]class ContrastAdjustment(PanelWidget): """Contrast adjustment tool""" __implements__ = (IPanel,) PANEL_ID = ID_CONTRAST PANEL_TITLE = _("Contrast adjustment tool") PANEL_ICON = "contrast.png" def __init__(self, parent=None): super(ContrastAdjustment, self).__init__(parent) self.local_manager = None # local manager for the histogram plot self.manager = None # manager for the associated image plot # Storing min/max markers for each active image self.min_markers = {} self.max_markers = {} # Select point tools self.min_select_tool = None self.max_select_tool = None style = "<span style='color: #444444'><b>%s</b></span>" layout, _label = get_image_layout( self.PANEL_ICON, style % self.PANEL_TITLE, alignment=Qt.AlignCenter ) layout.setAlignment(Qt.AlignCenter) vlayout = QVBoxLayout() vlayout.addLayout(layout) self.local_manager = PlotManager(self) self.histogram = LevelsHistogram(parent) vlayout.addWidget(self.histogram) self.local_manager.add_plot(self.histogram) hlayout = QHBoxLayout() self.setLayout(hlayout) hlayout.addLayout(vlayout) self.toolbar = toolbar = QToolBar(self) toolbar.setOrientation(Qt.Vertical) # toolbar.setToolButtonStyle(Qt.ToolButtonTextBesideIcon) hlayout.addWidget(toolbar) # Add standard plot-related tools to the local manager lman = self.local_manager lman.add_tool(SelectTool) lman.add_tool(BasePlotMenuTool, "item") lman.add_tool(BasePlotMenuTool, "axes") lman.add_tool(BasePlotMenuTool, "grid") lman.add_tool(AntiAliasingTool) lman.get_default_tool().activate() self.outliers_param = EliminateOutliersParam(self.PANEL_TITLE)
[docs] def register_panel(self, manager): """Register panel to plot manager""" self.manager = manager default_toolbar = self.manager.get_default_toolbar() self.manager.add_toolbar(self.toolbar, "contrast") self.manager.set_default_toolbar(default_toolbar) self.setup_actions() for plot in manager.get_plots(): self.histogram.connect_plot(plot)
[docs] def configure_panel(self): """Configure panel""" self.min_select_tool = self.manager.add_tool( SelectPointTool, title=_("Minimum level"), on_active_item=True, mode="create", tip=_("Select minimum level on image"), toolbar_id="contrast", end_callback=self.apply_min_selection, ) self.max_select_tool = self.manager.add_tool( SelectPointTool, title=_("Maximum level"), on_active_item=True, mode="create", tip=_("Select maximum level on image"), toolbar_id="contrast", end_callback=self.apply_max_selection, )
def get_plot(self): return self.manager.get_active_plot()
[docs] def closeEvent(self, event): self.hide() event.ignore()
def setup_actions(self): fullrange_ac = create_action( self, _("Full range"), icon=get_icon("full_range.png"), triggered=self.histogram.set_full_range, tip=_("Scale the image's display range " "according to data range"), ) autorange_ac = create_action( self, _("Eliminate outliers"), icon=get_icon("eliminate_outliers.png"), triggered=self.eliminate_outliers, tip=_( "Eliminate levels histogram " "outliers and scale the image's " "display range accordingly" ), ) add_actions(self.toolbar, [fullrange_ac, autorange_ac]) def eliminate_outliers(self): def apply(param): self.histogram.eliminate_outliers(param.percent) if self.outliers_param.edit(self, apply=apply): apply(self.outliers_param) def apply_min_selection(self, tool): item = self.get_plot().get_last_active_item(IVoiImageItemType) point = self.min_select_tool.get_coordinates() z = item.get_data(*point) self.histogram.set_min(z) def apply_max_selection(self, tool): item = self.get_plot().get_last_active_item(IVoiImageItemType) point = self.max_select_tool.get_coordinates() z = item.get_data(*point) self.histogram.set_max(z)
[docs] def set_range(self, _min, _max): """Set contrast panel's histogram range""" self.histogram.set_range(_min, _max) # Update the levels histogram in case active item data has changed: self.histogram.selection_changed(self.get_plot())