Interactive use of PyEPR

In this tutorial it is showed an example of how to use PyEPR interactively to open, browse and display data of an ENVISAT ASAR product.

For the interactive session it is used the Jupyter console started with the –pylab option to enable the interactive plotting features provided by the matplotlib package.

The ASAR product used in this example is a free sample available at the ESA web site.

epr module and classes

After starting the jupyter console with the following command:

$ jupyter console -- --pylab

one can import the epr module and start start taking confidence with available classes and functions:

Jupyter console 5.2.0

Python 3.6.5 (default, Apr  1 2018, 05:46:30)
Type "copyright", "credits" or "license" for more information.

IPython 5.5.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: import epr

In [2]: epr?

Base Class:       <type 'module'>
String Form:      <module 'epr' from 'epr.so'>
Namespace:        Interactive
File:             /home/antonio/projects/pyepr/epr.so
Docstring:
    Python bindings for ENVISAT Product Reader C API

    PyEPR_ provides Python_ bindings for the ENVISAT Product Reader C API
    (`EPR API`_) for reading satellite data from ENVISAT_ ESA_ (European
    Space Agency) mission.

    PyEPR_ is fully object oriented and, as well as the `EPR API`_ for C,
    supports ENVISAT_ MERIS, AATSR Level 1B and Level 2 and also ASAR data
    products. It provides access to the data either on a geophysical
    (decoded, ready-to-use pixel samples) or on a raw data layer.
    The raw data access makes it possible to read any data field contained
    in a product file.

    .. _PyEPR: http://avalentino.github.io/pyepr
    .. _Python: https://www.python.org
    .. _`EPR API`: https://github.com/bcdev/epr-api
    .. _ENVISAT: https://envisat.esa.int
    .. _ESA: https://earth.esa.int

In [3]: epr.__version__, epr.EPR_C_API_VERSION
Out[3]: ('1.0.0', '2.3dev')

Docstrings are available for almost all classes, methods and functions in the epr and they can be displayed using the help() python command or the ? Jupyter shortcut as showed above.

Also Jupyter provides a handy tab completion mechanism to automatically complete commands or to display available functions and classes:

In [4]: product = epr. [TAB]
epr.Band                     epr.E_TID_STRING
epr.DSD                      epr.E_TID_TIME
epr.Dataset                  epr.E_TID_UCHAR
epr.EPRError                 epr.E_TID_UINT
epr.EPRTime                  epr.E_TID_UNKNOWN
epr.EPRValueError            epr.E_TID_USHORT
epr.EPR_C_API_VERSION        epr.EprObject
epr.E_SMID_LIN               epr.Field
epr.E_SMID_LOG               epr.Product
epr.E_SMID_NON               epr.Raster
epr.E_SMOD_1OF1              epr.Record
epr.E_SMOD_1OF2              epr.create_bitmask_raster
epr.E_SMOD_2OF2              epr.create_raster
epr.E_SMOD_2TOF              epr.data_type_id_to_str
epr.E_SMOD_3TOI              epr.get_data_type_size
epr.E_TID_CHAR               epr.get_sample_model_name
epr.E_TID_DOUBLE             epr.get_scaling_method_name
epr.E_TID_FLOAT              epr.np
epr.E_TID_INT                epr.open
epr.E_TID_SHORT              epr.so
epr.E_TID_SPARE              epr.sys

epr.Product navigation

The first thing to do is to use the epr.open() function to get an instance of the desired ENVISAT epr.Product:

In [4]: product = epr.open(\
'ASA_IMP_1PNUPA20060202_062233_000000152044_00435_20529_3110.N1')

In [4]: product.
product.bands                product.get_mph
product.close                product.get_num_bands
product.closed               product.get_num_datasets
product.datasets             product.get_num_dsds
product.file_path            product.get_scene_height
product.get_band             product.get_scene_width
product.get_band_at          product.get_sph
product.get_band_names       product.id_string
product.get_dataset          product.meris_iodd_version
product.get_dataset_at       product.read_bitmask_raster
product.get_dataset_names    product.tot_size
product.get_dsd_at

In [5]: product.tot_size / 1024.**2
Out[5]: 132.01041889190674

In [6]: print(product)
epr.Product(ASA_IMP_1PNUPA20060202_ ...) 7 datasets, 5 bands

epr.Dataset(MDS1_SQ_ADS) 1 records
epr.Dataset(MAIN_PROCESSING_PARAMS_ADS) 1 records
epr.Dataset(DOP_CENTROID_COEFFS_ADS) 1 records
epr.Dataset(SR_GR_ADS) 1 records
epr.Dataset(CHIRP_PARAMS_ADS) 1 records
epr.Dataset(GEOLOCATION_GRID_ADS) 11 records
epr.Dataset(MDS1) 8192 records

epr.Band(slant_range_time) of epr.Product(ASA_IMP_1PNUPA20060202_ ...)
epr.Band(incident_angle) of epr.Product(ASA_IMP_1PNUPA20060202_ ...)
epr.Band(latitude) of epr.Product(ASA_IMP_1PNUPA20060202 ...)
epr.Band(longitude) of epr.Product(ASA_IMP_1PNUPA20060202 ...)
epr.Band(proc_data) of epr.Product(ASA_IMP_1PNUPA20060202 ...)

A short summary of product contents can be displayed simply printing the epr.Product object as showed above. Being able to display contents of each object it is easy to keep browsing and get all desired information from the product:

In [7]: dataset = product.get_dataset('MAIN_PROCESSING_PARAMS_ADS')

In [8]: dataset
Out[8]: epr.Dataset(MAIN_PROCESSING_PARAMS_ADS) 1 records

In [9]: record = dataset.[TAB]
dataset.create_record    dataset.get_dsd_name     dataset.product
dataset.description      dataset.get_name         dataset.read_record
dataset.get_dsd          dataset.get_num_records  dataset.records

In [9]: record = dataset.read_record(0)

In [10]: record
Out[10]: <epr.Record object at 0x33570f0> 220 fields

In [11]: record.get_field_names()[:20]
Out[11]:
['first_zero_doppler_time',
 'attach_flag',
 'last_zero_doppler_time',
 'work_order_id',
 'time_diff',
 'swath_id',
 'range_spacing',
 'azimuth_spacing',
 'line_time_interval',
 'num_output_lines',
 'num_samples_per_line',
 'data_type',
 'spare_1',
 'data_analysis_flag',
 'ant_elev_corr_flag',
 'chirp_extract_flag',
 'srgr_flag',
 'dop_cen_flag',
 'dop_amb_flag',
 'range_spread_comp_flag']

In [12]: field = record.get_field('range_spacing')

In [13]: field.get [TAB]
field.get_description  field.get_name         field.get_unit
field.get_elem         field.get_num_elems
field.get_elems        field.get_type

In [13]: field.get_description()
Out[13]: 'Range sample spacing'

In [14]: epr.data_type_id_to_str(field.get_type())
Out[14]: 'float'

In [15]: field.get_num_elems()
Out[15]: 1

In [16]: field.get_unit()
Out[16]: 'm'

In [17]: print(field)
range_spacing = 12.500000

Iterating over epr objects

epr.Record objects are also iterable so one can write code like the following:

In [18]: for field in record:
             if field.get_num_elems() == 4:
                 print('%s: %d elements' % (field.get_name(), len(field)))

        ....:
nominal_chirp.1.nom_chirp_amp: 4 elements
nominal_chirp.1.nom_chirp_phs: 4 elements
nominal_chirp.2.nom_chirp_amp: 4 elements
nominal_chirp.2.nom_chirp_phs: 4 elements
nominal_chirp.3.nom_chirp_amp: 4 elements
nominal_chirp.3.nom_chirp_phs: 4 elements
nominal_chirp.4.nom_chirp_amp: 4 elements
nominal_chirp.4.nom_chirp_phs: 4 elements
nominal_chirp.5.nom_chirp_amp: 4 elements
nominal_chirp.5.nom_chirp_phs: 4 elements
beam_merge_sl_range: 4 elements
beam_merge_alg_param: 4 elements

Image data

Dealing with image data is simple as well:

In [19]: product.get_band_names()
Out[19]: ['slant_range_time',
          'incident_angle',
          'latitude',
          'longitude',
          'proc_data']

In [19]: band = product.get_band('proc_data')

In [20]: data = band. [TAB]
band.bm_expr                   band.read_raster
band.create_compatible_raster  band.sample_model
band.data_type                 band.scaling_factor
band.description               band.scaling_method
band.get_name                  band.scaling_offset
band.lines_mirrored            band.spectr_band_index
band.product                   band.unit
band.read_as_array

In [20]: data = band.read_as_array(1000, 1000, xoffset=100, \
yoffset=6500, xstep=2, ystep=2)

In [21]: data
Out[21]:
array([[ 146.,  153.,  134., ...,   51.,   55.,   72.],
       [ 198.,  163.,  146., ...,   26.,   54.,   57.],
       [ 127.,  205.,  105., ...,   64.,   76.,   61.],
       ...,
       [  64.,   78.,   52., ...,   96.,  176.,  159.],
       [  66.,   41.,   45., ...,  200.,  153.,  203.],
       [  64.,   71.,   88., ...,  289.,  182.,  123.]], dtype=float32)

In [22]: data.shape
Out[22]: (500, 500)

In [23]: imshow(data, cmap=cm.gray, vmin=0, vmax=1000)
Out[23]: <matplotlib.image.AxesImage object at 0x60dcf10>

In [24]: title(band.description)
Out[24]: <matplotlib.text.Text object at 0x67e9950>

In [25]: colorbar()
Out[25]: <matplotlib.colorbar.Colorbar instance at 0x6b18cb0>
_images/ASA_IMP_crop.png

Image data read from the “proc_data” band

Closing the epr.Product

Finally the epr.Product can be closed using the epr.Product.close() method:

In [26]: product.close()

After a product is closed no more I/O operations can be performed on it. Any attempt to do it will raise a ValueError:

In [27]: product.tot_size / 1024.**2
-------------------------------------------------------------------------
ValueError                              Traceback (most recent call last)
<ipython-input-13-6420c80534dc> in <module>()
----> 1 product.tot_size / 1024.**2

epr.so in epr.Product.tot_size.__get__ (src/epr.c:16534)()

epr.so in epr.Product.check_closed_product (src/epr.c:16230)()

ValueError: I/O operation on closed file

At any time the user can check whenever a epr.Product is closed or not using the epr.Product.closed property:

In [28]: product.closed
Out[28]: True