.. jupyter-execute:: :hide-code: import set_working_directory Using a codon model ------------------- We load the unaligned sequences we will use in our examples. .. jupyter-execute:: from cogent3 import get_app loader = get_app("load_unaligned", format="fasta") seqs = loader("data/SCA1-cds.fasta") .. note:: We use an app loader, but since this is just a single file we could have used the ``cogent3.load_unaligned_seqs()`` function. Codon alignment with default settings ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The default settings will result in estimation of a guide tree (using percent identity between the sequences). The default "codon" model is MG94HKY. .. jupyter-execute:: from cogent3 import get_app codon_aligner = get_app("progressive_align", "codon") aligned = codon_aligner(seqs) aligned .. note:: If you specify ``unique_guides=True``, a guide tree will be estimated for every alignment. Specify a different distance measure for estimating the guide tree ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The distance measures available are the same as for the nucleotide case (percent, TN93 or paralinear). .. note:: An estimated guide tree has its branch lengths scaled so they are consistent with usage in a codon model. .. jupyter-execute:: nt_aligner = get_app("progressive_align", "codon", distance="paralinear") aligned = nt_aligner(seqs) aligned Providing a guide tree ^^^^^^^^^^^^^^^^^^^^^^ .. jupyter-execute:: tree = "((Chimp:0.001,Human:0.001):0.0076,Macaque:0.01,((Rat:0.01,Mouse:0.01):0.02,Mouse_Lemur:0.02):0.01)" codon_aligner = get_app("progressive_align", "codon", guide_tree=tree) aligned = codon_aligner(seqs) aligned .. warning:: The guide tree must have branch lengths, otherwise a ``ValueError`` is raised. Specifying the gap parameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. jupyter-execute:: codon_aligner = get_app("progressive_align", "codon", guide_tree=tree, indel_rate=0.001, indel_length=0.01 ) aligned = codon_aligner(seqs) aligned Specifying the substitution model and parameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Any ``cogent3`` codon substitution model can be used. (See ``cogent3.available_models()``.) .. jupyter-execute:: codon_aligner = get_app("progressive_align", "CNFHKY", guide_tree=tree, param_vals=dict(omega=0.1, kappa=3) ) aligned = codon_aligner(seqs) aligned .. note:: If you provide parameter values, those must be consistent with the model definition. Alignment settings and file provenance are recorded in the ``info`` attribute ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The parameters used to construct the alignment, including the guide tree and substitution model, are record in the alignment ``info`` attribute. .. jupyter-execute:: aligned.info