#!/usr/bin/env python # -*- coding: utf-8 -*- # # C++ version Copyright (c) 2006-2007 Erin Catto http://www.box2d.org # Python version by Ken Lauer / sirkne at gmail dot com # # This software is provided 'as-is', without any express or implied # warranty. In no event will the authors be held liable for any damages # arising from the use of this software. # Permission is granted to anyone to use this software for any purpose, # including commercial applications, and to alter it and redistribute it # freely, subject to the following restrictions: # 1. The origin of this software must not be misrepresented; you must not # claim that you wrote the original software. If you use this software # in a product, an acknowledgment in the product documentation would be # appreciated but is not required. # 2. Altered source versions must be plainly marked as such, and must not be # misrepresented as being the original software. # 3. This notice may not be removed or altered from any source distribution. from math import sqrt from .framework import (Framework, Keys, main) from Box2D import (b2CircleShape, b2FixtureDef, b2PolygonShape, b2Random, b2Vec2, b2_epsilon) # ***** NOTE ***** # ***** NOTE ***** # This example does not appear to be working currently... # It was ported from the JBox2D (Java) version # ***** NOTE ***** # ***** NOTE ***** class Liquid (Framework): name = "Liquid Test" description = '' bullet = None num_particles = 1000 total_mass = 10.0 fluid_minx = -11.0 fluid_maxx = 5.0 fluid_miny = -10.0 fluid_maxy = 10.0 hash_width = 40 hash_height = 40 rad = 0.6 visc = 0.004 def __init__(self): super(Liquid, self).__init__() self.per_particle_mass = self.total_mass / self.num_particles ground = self.world.CreateStaticBody( shapes=[ b2PolygonShape(box=[5.0, 0.5]), b2PolygonShape(box=[1.0, 0.2, (0, 4), -0.2]), b2PolygonShape(box=[1.5, 0.2, (-1.2, 5.2), -1.5]), b2PolygonShape(box=[0.5, 50.0, (5, 0), 0.0]), b2PolygonShape(box=[0.5, 3.0, (-8, 0), 0.0]), b2PolygonShape(box=[2.0, 0.1, (-6, -2.8), 0.1]), b2CircleShape(radius=0.5, pos=(-.5, -4)), ] ) cx = 0 cy = 25 box_width = 2.0 box_height = 20.0 self.liquid = [] for i in range(self.num_particles): self.createDroplet((b2Random(cx - box_width * 0.5, cx + box_width * 0.5), b2Random(cy - box_height * 0.5, cy + box_height * 0.5))) self.createBoxSurfer() if hasattr(self, 'settings'): self.settings.enableSubStepping = False def createBoxSurfer(self): self.surfer = self.world.CreateDynamicBody(position=(0, 25)) self.surfer.CreatePolygonFixture( density=1, box=(b2Random(0.3, 0.7), b2Random(0.3, 0.7)), ) def createDroplet(self, position): body = self.world.CreateDynamicBody( position=position, fixedRotation=True, allowSleep=False, ) body.CreateCircleFixture( groupIndex=-10, radius=0.05, restitution=0.4, friction=0, ) body.mass = self.per_particle_mass self.liquid.append(body) def applyLiquidConstraint(self, dt): # (original comments left untouched) # Unfortunately, this simulation method is not actually scale # invariant, and it breaks down for rad < ~3 or so. So we need # to scale everything to an ideal rad and then scale it back after. idealRad = 50 idealRad2 = idealRad ** 2 multiplier = idealRad / self.rad info = dict([(drop, (drop.position, multiplier * drop.position, multiplier * drop.linearVelocity)) for drop in self.liquid]) change = dict([(drop, b2Vec2(0, 0)) for drop in self.liquid]) dx = self.fluid_maxx - self.fluid_minx dy = self.fluid_maxy - self.fluid_miny range_ = (-1, 0, 1) hash_width = self.hash_width hash_height = self.hash_height max_len = 9.9e9 visc = self.visc hash = self.hash neighbors = set() # Populate the neighbor list from the 9 nearest cells for drop, ((worldx, worldy), (mx, my), (mvx, mvy)) in list(info.items()): hx = int((worldx / dx) * hash_width) hy = int((worldy / dy) * hash_height) neighbors.clear() for nx in range_: xc = hx + nx if not (0 <= xc < hash_width): continue for ny in range_: yc = hy + ny if yc in hash[xc]: for neighbor in hash[xc][yc]: neighbors.add(neighbor) if drop in neighbors: neighbors.remove(drop) # Particle pressure calculated by particle proximity # Pressures = 0 iff all particles within range are idealRad # distance away lengths = [] p = 0 pnear = 0 for neighbor in neighbors: nx, ny = info[neighbor][1] vx, vy = nx - mx, ny - my if -idealRad < vx < idealRad and -idealRad < vy < idealRad: len_sqr = vx ** 2 + vy ** 2 if len_sqr < idealRad2: len_ = sqrt(len_sqr) if len_ < b2_epsilon: len_ = idealRad - 0.01 lengths.append(len_) oneminusq = 1.0 - (len_ / idealRad) sq = oneminusq ** 2 p += sq pnear += sq * oneminusq else: lengths.append(max_len) # Now actually apply the forces pressure = (p - 5) / 2.0 # normal pressure term presnear = pnear / 2.0 # near particles term changex, changey = 0, 0 for len_, neighbor in zip(lengths, neighbors): (nx, ny), (nvx, nvy) = info[neighbor][1:3] vx, vy = nx - mx, ny - my if -idealRad < vx < idealRad and -idealRad < vy < idealRad: if len_ < idealRad: oneminusq = 1.0 - (len_ / idealRad) factor = oneminusq * \ (pressure + presnear * oneminusq) / (2.0 * len_) dx_, dy_ = vx * factor, vy * factor relvx, relvy = nvx - mvx, nvy - mvy factor = visc * oneminusq * dt dx_ -= relvx * factor dy_ -= relvy * factor change[neighbor] += (dx_, dy_) changex -= dx_ changey -= dy_ change[drop] += (changex, changey) for drop, (dx_, dy_) in list(change.items()): if dx_ != 0 or dy_ != 0: drop.position += (dx_ / multiplier, dy_ / multiplier) drop.linearVelocity += (dx_ / (multiplier * dt), dy_ / (multiplier * dt)) def hashLocations(self): hash_width = self.hash_width hash_height = self.hash_height self.hash = hash = dict([(i, {}) for i in range(hash_width)]) info = [(drop, drop.position) for drop in self.liquid] dx = self.fluid_maxx - self.fluid_minx dy = self.fluid_maxy - self.fluid_miny xs, ys = set(), set() for drop, (worldx, worldy) in info: hx = int((worldx / dx) * hash_width) hy = int((worldy / dy) * hash_height) xs.add(hx) ys.add(hy) if 0 <= hx < hash_width and 0 <= hy < hash_height: x = hash[hx] if hy not in x: x[hy] = [drop] else: x[hy].append(drop) def dampenLiquid(self): for drop in self.liquid: drop.linearVelocity *= 0.995 def checkBounds(self): self.hash = None to_remove = [ drop for drop in self.liquid if drop.position.y < self.fluid_miny] for drop in to_remove: self.liquid.remove(drop) self.world.DestroyBody(drop) self.createDroplet( (0.0 + b2Random(-0.6, 0.6), 15.0 + b2Random(-2.3, 2.0))) if self.surfer.position.y < -15: self.world.DestroyBody(self.surfer) self.createBoxSurfer() def Step(self, settings): super(Liquid, self).Step(settings) dt = 1.0 / settings.hz self.hashLocations() self.applyLiquidConstraint(dt) self.dampenLiquid() self.checkBounds() def Keyboard(self, key): if key == Keys.K_b: if self.bullet: self.world.DestroyBody(self.bullet) self.bullet = None circle = b2FixtureDef( shape=b2CircleShape(radius=0.25), density=20, restitution=0.05) self.bullet = self.world.CreateDynamicBody( position=(-31, 5), bullet=True, fixtures=circle, linearVelocity=(400, 0), ) if __name__ == "__main__": main(Liquid)