ESA JWST Archive (astroquery.esa.jwst
)¶
The James Webb Space Telescope (JWST) is a collaborative project between NASA, ESA, and the Canadian Space Agency (CSA). Although radically different in design, and emphasizing the infrared part of the electromagnetic spectrum, JWST is widely seen as the successor to the Hubble Space Telescope (HST). The JWST observatory consist of a deployable 6.6 meter passively cooled telescope optimized for infrared wavelengths, and is operated in deep space at the anti-Sun Earth-Sun Lagrangian point (L2). It carries four scientific instruments: a near-infrared camera (NIRCam), a near-infrared multi-object spectrograph (NIRSpec) covering the 0.6 - 5 μm spectral region, a near-infrared slit-less spectrograph (NIRISS), and a combined mid-infrared camera/spectrograph (MIRI) covering 5 - 28 μm. The JWST focal plane (see image to the right) contains apertures for the science instruments and the Fine Guidance Sensor (FGS).
The scientific goals of the JWST mission can be sorted into four broad themes: The birth of stars and proto-planetary systems Planetary systems and the origins of life
The end of the dark ages: first light and re-ionization.
The assembly of galaxies.
The birth of stars and proto-planetary systems.
Planetary systems and the origins of life.
This package provides access to the metadata and datasets provided by the European Space Agency JWST Archive using a TAP+ REST service. TAP+ is an extension of Table Access Protocol (TAP: http://www.ivoa.net/documents/TAP/) specified by the International Virtual Observatory Alliance (IVOA: http://www.ivoa.net).
The TAP query language is Astronomical Data Query Language (ADQL: http://www.ivoa.net/documents/ADQL/2.0), which is similar to Structured Query Language (SQL), widely used to query databases.
TAP provides two operation modes: Synchronous and Asynchronous:
Synchronous: the response to the request will be generated as soon as the request received by the server. (Do not use this method for queries that generate a big amount of results.)
Asynchronous: the server starts a job that will execute the request. The first response to the request is the required information (a link) to obtain the job status. Once the job is finished, the results can be retrieved.
This module can use these two modes, usinc the ‘async_job=False/True’ tag in different functions.
ESA JWST TAP+ server provides two access mode: public and authenticated:
Public: this is the standard TAP access. A user can execute ADQL queries and upload tables to be used in a query ‘on-the-fly’ (these tables will be removed once the query is executed). The results are available to any other user and they will remain in the server for a limited space of time.
Authenticated: some functionalities are restricted to authenticated users only. The results are saved in a private user space and they will remain in the server for ever (they can be removed by the user).
ADQL queries and results are saved in a user private area.
Cross-match operations: a catalog cross-match operation can be executed. Cross-match operations results are saved in a user private area.
Persistence of uploaded tables: a user can upload a table in a private space. These tables can be used in queries as well as in cross-matches operations.
This python module provides an Astroquery API access.
Examples¶
It is highly recommended checking the status of JWST TAP before executing this module. To do this:
>>> from astroquery.esa.jwst import Jwst
>>> Jwst.get_status_messages()
This method will retrieve the same warning messages shown in JWST Science Archive with information about service degradation.
1. Non authenticated access¶
1.1. Query region¶
>>> import astropy.units as u
>>> from astropy.coordinates import SkyCoord
>>> from astroquery.esa.jwst import Jwst
>>>
>>> coord=SkyCoord(ra=53, dec=-27, unit=(u.degree, u.degree), frame='icrs')
>>> width=u.Quantity(5, u.deg)
>>> height=u.Quantity(5, u.deg)
>>> r=Jwst.query_region(coordinate=coord, width=width, height=height)
>>> r
Query finished.
dist obsid ... type typecode
------------------ ------------------------------------ ... ----- --------
0.8042331552744052 00000000-0000-0000-8f43-c68be243b878 ... PRIME S
0.8042331552744052 00000000-0000-0000-8f43-c68be243b878 ... PRIME S
0.8042331552744052 00000000-0000-0000-94fc-23f102d345d3 ... PRIME S
0.8042331552744052 00000000-0000-0000-94fc-23f102d345d3 ... PRIME S
0.8042331552744052 00000000-0000-0000-a288-14744c2a684b ... PRIME S
0.8042331552744052 00000000-0000-0000-a288-14744c2a684b ... PRIME S
0.8042331552744052 00000000-0000-0000-b3cc-6aa1e2e509c2 ... PRIME S
0.8042331552744052 00000000-0000-0000-b3cc-6aa1e2e509c2 ... PRIME S
0.8042331552744052 00000000-0000-0000-b3eb-870a80410d40 ... PRIME S
0.8042331552744052 00000000-0000-0000-b3eb-870a80410d40 ... PRIME S
0.8042331552744052 00000000-0000-0000-babe-5c1ec63d3301 ... PRIME S
0.8042331552744052 00000000-0000-0000-babe-5c1ec63d3301 ... PRIME S
1.2. Cone search¶
>>> import astropy.units as u
>>> from astropy.coordinates import SkyCoord
>>> from astroquery.esa.jwst import Jwst
>>>
>>> coord=SkyCoord(ra=53, dec=-27, unit=(u.degree, u.degree), frame='icrs')
>>> radius=u.Quantity(5.0, u.deg)
>>> j=Jwst.cone_search(coordinate=coord, radius=radius, async_job=True)
>>> r=j.get_results()
>>> r
dist obsid ... type typecode
------------------ ------------------------------------ ... ----- --------
0.8042331552744052 00000000-0000-0000-8f43-c68be243b878 ... PRIME S
0.8042331552744052 00000000-0000-0000-8f43-c68be243b878 ... PRIME S
0.8042331552744052 00000000-0000-0000-94fc-23f102d345d3 ... PRIME S
0.8042331552744052 00000000-0000-0000-94fc-23f102d345d3 ... PRIME S
0.8042331552744052 00000000-0000-0000-a288-14744c2a684b ... PRIME S
0.8042331552744052 00000000-0000-0000-a288-14744c2a684b ... PRIME S
0.8042331552744052 00000000-0000-0000-b3cc-6aa1e2e509c2 ... PRIME S
0.8042331552744052 00000000-0000-0000-b3cc-6aa1e2e509c2 ... PRIME S
0.8042331552744052 00000000-0000-0000-b3eb-870a80410d40 ... PRIME S
0.8042331552744052 00000000-0000-0000-b3eb-870a80410d40 ... PRIME S
0.8042331552744052 00000000-0000-0000-babe-5c1ec63d3301 ... PRIME S
0.8042331552744052 00000000-0000-0000-babe-5c1ec63d3301 ... PRIME S
1.3. Query by target name¶
To provide the target coordinates based on its name and execute the query region method. It uses three different catalogs to resolve the coordinates: SIMBAD, NED and VIZIER. An additional target resolver is provider, ALL (which is also the default value), using all the aforementioned catalogues in the defined order to obtain the required coordinates (using the following element in the list if the target name cannot be resolved).
>>> from astroquery.esa.jwst import Jwst
>>> import astropy.units as u
>>>
>>> target_name='M1'
>>> target_resolver='ALL'
>>> radius=u.Quantity(5, u.deg)
>>> r=Jwst.query_target(target_name=target_name, target_resolver=target_resolver, radius=radius)
>>> r
dist observationid ...
------------------ -------------------------------- ...
3.4465676399769096 jw01179006001_xx100_00000_nircam ...
3.4465676399769096 jw01179005001_xx100_00000_nircam ...
3.4465676399769096 jw01179005001_xx103_00003_nircam ...
3.4465676399769096 jw01179006001_xx101_00001_nircam ...
3.4465676399769096 jw01179005001_xx102_00002_nircam ...
3.4465676399769096 jw01179006001_xx105_00002_nircam ...
3.4465676399769096 jw01179005001_xx106_00003_nircam ...
3.4465676399769096 jw01179006001_xx102_00002_nircam ...
3.4465676399769096 jw01179006001_xx103_00003_nircam ...
3.4465676399769096 jw01179005001_xx101_00001_nircam ...
3.4465676399769096 jw01179005001_xx104_00001_nircam ...
3.4465676399769096 jw01179006001_xx104_00001_nircam ...
3.4465676399769096 jw01179006001_xx106_00003_nircam ...
3.4465676399769096 jw01179005001_xx105_00002_nircam ...
This method uses the same parameters as query region, but also includes the target name and the catalogue (target resolver) to retrieve the coordinates.
>>> from astroquery.esa.jwst import Jwst
>>> import astropy.units as u
>>>
>>> target_name='LMC'
>>> target_resolver='NED'
>>> width=u.Quantity(5, u.deg)
>>> height=u.Quantity(5, u.deg)
>>> r=Jwst.query_target(target_name=target_name, target_resolver=target_resolver, width=width, height=height, async_job=True)
>>> r
dist observationid ...
---------------------- -------------------------------------- ...
0.00010777991644807922 jw00322001003_02101_00001_nrca1 ...
0.00010777991644807922 jw00322001003_02101_00001_nrcb2 ...
0.00010777991644807922 jw96854009004_xxxxx_00003-00003_nircam ...
0.00010777991644807922 jw00322001003_02101_00001_nrcblong ...
0.00010777991644807922 jw00827011001_02101_00001_mirimage ...
0.00010777991644807922 jw01039004001_xx101_00001_miri ...
0.00010777991644807922 jw00322001003_02101_00001_nrcb1 ...
0.00010777991644807922 jw00322001002_02101_00001_nrcb2 ...
0.00010777991644807922 jw96854009001_xx102_00002_nircam ...
... ... ...
1.4 Getting data products¶
To query the data products associated with a certain Observation ID
>>> from astroquery.esa.jwst import Jwst
>>> product_list=Jwst.get_product_list(observation_id='jw00777011001_02104_00001_nrcblong')
>>> for row in product_list:
>>> print("filename: %s" % (row['filename']))
filename: jw00777011001_02104_00001_nrcblong_c1005_crf.fits
filename: jw00777011001_02104_00001_nrcblong_cal.fits
filename: jw00777011001_02104_00001_nrcblong_cal.jpg
filename: jw00777011001_02104_00001_nrcblong_cal_thumb.jpg
filename: jw00777011001_02104_00001_nrcblong_i2d.fits
filename: jw00777011001_02104_00001_nrcblong_o011_crf.fits
You can filter by product type and calibration level (using a numerical value or the option ‘ALL’ -set by default- that will download all the products associated to this observation_id with the same and lower levels).
>>> from astroquery.esa.jwst import Jwst
>>> product_list=Jwst.get_product_list(observation_id='jw97012001001_02101_00001_guider1', product_type='science')
>>> for row in product_list:
>>> print("filename: %s" % (row['filename']))
filename: jw97012001001_02101_00001_guider1_cal.fits
filename: jw97012001001_02101_00001_guider1_uncal.fits
To download a data product
>>> from astroquery.esa.jwst import Jwst
>>> query="select a.artifactid, a.uri from jwst.artifact a, jwst.plane p where p.planeid=a.planeid and p.obsid='00000000-0000-0000-9c08-f5be8f3df805'"
>>> job=Jwst.launch_job(query, async_job=True)
>>> results=job.get_results()
>>> results
artifactid filename
------------------------------------ ------------------------------------------------
00000000-0000-0000-a4f7-23ab64230444 jw00601004001_02102_00001_nrcb1_rate.fits
00000000-0000-0000-b796-76a61aade312 jw00601004001_02102_00001_nrcb1_rateints.fits
00000000-0000-0000-ad5e-7d388b43ca4b jw00601004001_02102_00001_nrcb1_trapsfilled.fits
00000000-0000-0000-9335-09ff0e02f06b jw00601004001_02102_00001_nrcb1_uncal.fits
00000000-0000-0000-864d-b03ced521884 jw00601004001_02102_00001_nrcb1_uncal.jpg
00000000-0000-0000-9392-45ebdada66be jw00601004001_02102_00001_nrcb1_uncal_thumb.jpg
>>> output_file=Jwst.get_product(artifact_id='00000000-0000-0000-9335-09ff0e02f06b')
>>> output_file=Jwst.get_product(file_name='jw00601004001_02102_00001_nrcb1_uncal.fits')
To download products by observation identifier, it is possible to use the get_obs_products function, with the same parameters than get_product_list.
>>> observation_id='jw00777011001_02104_00001_nrcblong'
>>> results=Jwst.get_obs_products(observation_id=observation_id, cal_level=2, product_type='science')
INFO: {'RETRIEVAL_TYPE': 'OBSERVATION', 'DATA_RETRIEVAL_ORIGIN': 'ASTROQUERY', 'planeid': '00000000-0000-0000-879d-ae91fa2f43e2', 'calibrationlevel': 'SELECTED', 'product_type': 'science'} [astroquery.esa.jwst.core]
Retrieving data.
Done.
Product(s) saved at: /<local_path>/<temporary_directory>/\temp_20200706_131015\jw00777011001_02104_00001_nrcblong_all_products
Product = /<local_path>/<temporary_directory>/\temp_20200706_131015\jw00777\level_1\jw00777011001_02104_00001_nrcblong_uncal.fits
Product = /<local_path>/<temporary_directory>/\temp_20200706_131015\jw00777\level_2\jw00777011001_02104_00001_nrcblong_cal.fits
Product =/<local_path>/<temporary_directory>/\temp_20200706_131015\jw00777\level_2\jw00777011001_02104_00001_nrcblong_i2d.fits
A temporary directory is created with the files and a list of the them is provided.
When more than one product is found, a tar file is retrieved. This method extracts the products.
This method is only intended to download the products with the same calibration level or below. If an upper level is requested:
ValueError: Requesting upper levels is not allowed
If proprietary data is requested and the user has not logged in:
403 Error 403:
Private file(s) requested: MAST token required for authentication.
It is also possible to extract the products associated to an observation with upper calibration levels with get_related_observations. Using the observation ID as input parameter, this function will retrieve the observations (IDs) that use it to create a composite observation.
>>> observation_id='jw00777011001_02104_00001_nrcblong'
>>> results=Jwst.get_related_observations(observation_id=observation_id)
[' jw00777-o011_t005_nircam_f277w-sub160', 'jw00777-c1005_t005_nircam_f277w-sub160']
1.5 Getting public tables¶
To load only table names (TAP+ capability)
>>> from astroquery.esa.jwst import Jwst
>>> tables=Jwst.load_tables(only_names=True)
>>> for table in (tables):
>>> print(table.name)
public.dual
tap_schema.columns
tap_schema.key_columns
tap_schema.keys
tap_schema.schemas
tap_schema.tables
jwst.artifact
jwst.chunk
jwst.main
jwst.observation
jwst.observationmember
jwst.part
jwst.plane
jwst.plane_inputs
To load table names (TAP compatible)
>>> from astroquery.esa.jwst import Jwst
>>> tables=Jwst.load_tables()
>>> for table in (tables):
>>> print(table.name)
public.dual
tap_schema.columns
tap_schema.key_columns
tap_schema.keys
tap_schema.schemas
tap_schema.tables
jwst.artifact
jwst.chunk
jwst.main
jwst.observation
jwst.observationmember
jwst.part
jwst.plane
jwst.plane_inputs
To load only a table (TAP+ capability)
>>> from astroquery.esa.jwst import Jwst
>>> table=Jwst.load_table('jwst.main')
>>> print(table)
TAP Table name: jwst.main
Description:
Num. columns: 112
Once a table is loaded, columns can be inspected
>>> from astroquery.esa.jwst import Jwst
>>> table=Jwst.load_table('jwst.main')
>>> for column in (table.columns):
>>> print(column.name)
obsid
planeid
public
calibrationlevel
dataproducttype
algorithm_name
collection
creatorid
energy_bandpassname
...
time_exposure
time_resolution
time_samplesize
type
typecode
1.6 Synchronous query¶
A synchronous query will not store the results at server side. These queries must be used when the amount of data to be retrieve is ‘small’.
There is a limit of 2000 rows. If you need more than that, you must use asynchronous queries.
The results can be saved in memory (default) or in a file.
Query without saving results in a file:
>>> from astroquery.esa.jwst import Jwst
>>>
>>> job=Jwst.launch_job("SELECT TOP 100 \
>>> instrument_name, observationuri, planeid, calibrationlevel, \
>>> dataproducttype \
>>> FROM jwst.main ORDER BY instrument_name, observationuri")
>>>
>>> print(job)
Jobid: None
Phase: COMPLETED
Owner: None
Output file: sync_20170223111452.xml.gz
Results: None
>>> r=job.get_results()
>>> r['planeid']
planeid
------------------------------------
00000000-0000-0000-9d6d-f192fde74ce4
00000000-0000-0000-8a85-d34d6a411611
00000000-0000-0000-969c-a49226673efa
00000000-0000-0000-8c07-c26c24bec2ee
00000000-0000-0000-89d2-b42624493c84
00000000-0000-0000-800d-659917e7bb26
00000000-0000-0000-8cb6-748fa37d47e3
00000000-0000-0000-8573-92ad575b8fb4
00000000-0000-0000-8572-b7b226953a2c
00000000-0000-0000-8d1d-765c362e3227
...
00000000-0000-0000-b7d9-b4686ed37bf0
00000000-0000-0000-822f-08376ffe6f0b
00000000-0000-0000-8a8e-8cd48bb4cd7a
00000000-0000-0000-8a9d-3e1aae1281ba
00000000-0000-0000-a2ac-1ac288320bf7
00000000-0000-0000-a20f-835a58ca7872
00000000-0000-0000-aa9c-541cc6e5ff87
00000000-0000-0000-8fe4-092c69639602
00000000-0000-0000-acfb-6e445e284609
00000000-0000-0000-96ff-efd5bbcd5afe
00000000-0000-0000-8d90-2ca5ebac4a51
Length = 37 rows
Query saving results in a file:
>>> from astroquery.esa.jwst import JWST
>>> job=Jwst.launch_job("SELECT TOP 100 \
>>> instrument_name, observationuri, planeid, calibrationlevel, \
>>> dataproducttype, target_ra, target_dec \
>>> FROM jwst.main ORDER BY instrument_name, observationuri", \
>>> dump_to_file=True)
>>>
>>> print(job)
Jobid: None
Phase: COMPLETED
Owner: None
Output file: sync_20181116164108.xml.gz
Results: None
>>> r=job.get_results()
>>> print(r['solution_id'])
>>> r=job.get_results()
>>> print(r['planeid'])
planeid
------------------------------------
00000000-0000-0000-9d6d-f192fde74ce4
00000000-0000-0000-8a85-d34d6a411611
00000000-0000-0000-969c-a49226673efa
00000000-0000-0000-8c07-c26c24bec2ee
00000000-0000-0000-89d2-b42624493c84
00000000-0000-0000-800d-659917e7bb26
00000000-0000-0000-8cb6-748fa37d47e3
00000000-0000-0000-8573-92ad575b8fb4
00000000-0000-0000-8572-b7b226953a2c
00000000-0000-0000-8d1d-765c362e3227
...
00000000-0000-0000-b7d9-b4686ed37bf0
00000000-0000-0000-822f-08376ffe6f0b
00000000-0000-0000-8a8e-8cd48bb4cd7a
00000000-0000-0000-8a9d-3e1aae1281ba
00000000-0000-0000-a2ac-1ac288320bf7
00000000-0000-0000-a20f-835a58ca7872
00000000-0000-0000-aa9c-541cc6e5ff87
00000000-0000-0000-8fe4-092c69639602
00000000-0000-0000-acfb-6e445e284609
00000000-0000-0000-96ff-efd5bbcd5afe
00000000-0000-0000-8d90-2ca5ebac4a51
Length = 37 rows
1.7 Synchronous query on an ‘on-the-fly’ uploaded table¶
A table can be uploaded to the server in order to be used in a query.
>>> from astroquery.esa.jwst import Jwst
>>> upload_resource='mytable.xml.gz'
>>> j=Jwst.launch_job(query="SELECT * from tap_upload.table_test", \
>>> upload_resource=upload_resource, \
>>> upload_table_name="table_test", verbose=True)
>>> r=j.get_results()
>>> r.pprint()
source_id alpha delta
--------- ----- -----
a 1.0 2.0
b 3.0 4.0
c 5.0 6.0
1.8 Asynchronous query¶
Asynchronous queries save results at server side. These queries can be accessed at any time. For anonymous users, results are kept for three days.
The results can be saved in memory (default) or in a file.
Query without saving results in a file:
>>> from astroquery.esa.jwst import Jwst
>>> job=Jwst.launch_job("select top 100 * from jwst.main", async_job=True)
>>> print(job)
Jobid: 1542383562372I
Phase: COMPLETED
Owner: None
Output file: async_20181116165244.vot
Results: None
>>> r=job.get_results()
>>> r['planeid']
solution_id
-------------------
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
...
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
1635378410781933568
Length = 100 rows
Query saving results in a file:
>>> from astroquery.esa.jwst import Jwst
>>>
>>> job=Jwst.launch_job("select top 100 * from jwst.main", dump_to_file=True)
>>>
>>> print(job)
Jobid: None
Phase: COMPLETED
Owner: None
Output file: 1635853688471D-result.vot.gz
Results: None
>>> r=job.get_results()
>>> r['solution_id']
planeid
------------------------------------
00000000-0000-0000-9d6d-f192fde74ce4
00000000-0000-0000-8a85-d34d6a411611
00000000-0000-0000-969c-a49226673efa
00000000-0000-0000-8c07-c26c24bec2ee
00000000-0000-0000-89d2-b42624493c84
00000000-0000-0000-800d-659917e7bb26
00000000-0000-0000-8cb6-748fa37d47e3
00000000-0000-0000-8573-92ad575b8fb4
00000000-0000-0000-8572-b7b226953a2c
00000000-0000-0000-8d1d-765c362e3227
...
00000000-0000-0000-b7d9-b4686ed37bf0
00000000-0000-0000-822f-08376ffe6f0b
00000000-0000-0000-8a8e-8cd48bb4cd7a
00000000-0000-0000-8a9d-3e1aae1281ba
00000000-0000-0000-a2ac-1ac288320bf7
00000000-0000-0000-a20f-835a58ca7872
00000000-0000-0000-aa9c-541cc6e5ff87
00000000-0000-0000-8fe4-092c69639602
00000000-0000-0000-acfb-6e445e284609
00000000-0000-0000-96ff-efd5bbcd5afe
00000000-0000-0000-8d90-2ca5ebac4a51
Length = 37 rows
1.9 Asynchronous job removal¶
To remove asynchronous
>>> from astroquery.esa.jwst import Jwst
>>> job=Jwst.remove_jobs(["job_id_1","job_id_2",...])
2. Authenticated access¶
Authenticated users are able to access to TAP+ capabilities (shared tables, persistent jobs, etc.)
In order to authenticate a user, login
method must be called. After a successful
authentication, the user will be authenticated until logout
method is called.
All previous methods (query_object
, cone_search
, load_table
, load_tables
, launch_job
) explained for
non authenticated users are applicable for authenticated ones.
The main differences are:
Asynchronous results are kept at server side for ever (until the user decides to remove one of them).
Users can access to shared tables.
It is also possible to set a token after logging using
set_token
function.
2.1. Login/Logout¶
Using the command line:
>>> from astroquery.esa.jwst import Jwst
>>> Jwst.login(user='userName', password='userPassword')
It is possible to use a file where the credentials are stored:
The file must containing user and password in two different lines.
>>> from astroquery.esa.jwst import Jwst
>>> Jwst.login(credentials_file='my_credentials_file')
MAST tokens can also be used in command line functions:
>>> from astroquery.esa.jwst import Jwst
>>> Jwst.login(user='userName', password='userPassword', token='mastToken')
If the user is logged in and a MAST token has not been included or must be changed, it can be
specified using the set_token
function.
>>> from astroquery.esa.jwst import Jwst
>>> Jwst.login(user='userName', password='userPassword')
>>> Jwst.set_token(token='mastToken')
To perform a logout:
>>> from astroquery.esa.jwst import Jwst
>>> Jwst.logout()