ImageNormalize¶
- class astropy.visualization.mpl_normalize.ImageNormalize(data=None, interval=None, vmin=None, vmax=None, stretch=<astropy.visualization.stretch.LinearStretch object>, clip=False, invalid=-1.0)[source]¶
Bases:
Normalize
Normalization class to be used with Matplotlib.
- Parameters:
- data
ndarray
, optional The image array. This input is used only if
interval
is also input.data
andinterval
are used to compute the vmin and/or vmax values only ifvmin
orvmax
are not input.- interval
BaseInterval
subclass instance, optional The interval object to apply to the input
data
to determine thevmin
andvmax
values. This input is used only ifdata
is also input.data
andinterval
are used to compute the vmin and/or vmax values only ifvmin
orvmax
are not input.- vmin, vmax
python:float
, optional The minimum and maximum levels to show for the data. The
vmin
andvmax
inputs override any calculated values from theinterval
anddata
inputs.- stretch
BaseStretch
subclass instance The stretch object to apply to the data. The default is
LinearStretch
.- clipbool, optional
If
True
, data values outside the [0:1] range are clipped to the [0:1] range.- invalid
python:None
orpython:float
, optional Value to assign NaN values generated by this class. NaNs in the input
data
array are not changed. For matplotlib normalization, theinvalid
value should map to the matplotlib colormap “under” value (i.e., any finite value < 0). IfNone
, then NaN values are not replaced. This keyword has no effect ifclip=True
.
- data
- Parameters:
- vmin, vmax
python:float
orpython:None
If vmin and/or vmax is not given, they are initialized from the minimum and maximum value, respectively, of the first input processed; i.e.,
__call__(A)
callsautoscale_None(A)
.- clipbool, default:
python:False
If
True
values falling outside the range[vmin, vmax]
, are mapped to 0 or 1, whichever is closer, and masked values are set to 1. IfFalse
masked values remain masked.Clipping silently defeats the purpose of setting the over, under, and masked colors in a colormap, so it is likely to lead to surprises; therefore the default is
clip=False
.
- vmin, vmax
Notes
Returns 0 if
vmin == vmax
.Methods Summary
__call__
(values[, clip, invalid])Transform values using this normalization.
inverse
(values[, invalid])Methods Documentation
- __call__(values, clip=None, invalid=None)[source]¶
Transform values using this normalization.
- Parameters:
- valuesnumpy:array_like
The input values.
- clipbool, optional
If
True
, values outside the [0:1] range are clipped to the [0:1] range. IfNone
then theclip
value from theImageNormalize
instance is used (the default of which isFalse
).- invalid
python:None
orpython:float
, optional Value to assign NaN values generated by this class. NaNs in the input
data
array are not changed. For matplotlib normalization, theinvalid
value should map to the matplotlib colormap “under” value (i.e., any finite value < 0). IfNone
, then theImageNormalize
instance value is used. This keyword has no effect ifclip=True
.