histogram¶
- astropy.stats.histogram(a, bins=10, range=None, weights=None, **kwargs)[source]¶
Enhanced histogram function, providing adaptive binnings
This is a histogram function that enables the use of more sophisticated algorithms for determining bins. Aside from the
bins
argument allowing a string specified how bins are computed, the parameters are the same asnumpy.histogram()
.- Parameters:
- anumpy:array_like
array of data to be histogrammed
- bins
python:int
,python:list
, orpython:str
, optional If bins is a string, then it must be one of:
‘blocks’ : use bayesian blocks for dynamic bin widths
‘knuth’ : use Knuth’s rule to determine bins
‘scott’ : use Scott’s rule to determine bins
‘freedman’ : use the Freedman-Diaconis rule to determine bins
- range
python:tuple
orpython:None
, optional the minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max())
- weightsnumpy:array_like, optional
An array the same shape as
a
. If given, the histogram accumulates the value of the weight corresponding toa
instead of returning the count of values. This argument does not affect determination of bin edges.- other keyword arguments are described in numpy.histogram().
- Returns:
- hist
array
The values of the histogram. See
density
andweights
for a description of the possible semantics.- bin_edges
array
ofdtype
python:float
Return the bin edges
(length(hist)+1)
.
- hist
See also
numpy.histogram