RegularEvents¶
- class astropy.stats.RegularEvents(dt, p0=0.05, gamma=None, ncp_prior=None)[source]¶
Bases:
FitnessFunc
Bayesian blocks fitness for regular events
This is for data which has a fundamental “tick” length, so that all measured values are multiples of this tick length. In each tick, there are either zero or one counts.
- Parameters:
- dt
python:float
tick rate for data
- p0
python:float
, optional False alarm probability, used to compute the prior on \(N_{\rm blocks}\) (see eq. 21 of Scargle 2013). If gamma is specified, p0 is ignored.
- ncp_prior
python:float
, optional If specified, use the value of
ncp_prior
to compute the prior as above, using the definition \({\tt ncp\_prior} = -\ln({\tt gamma})\). Ifncp_prior
is specified,gamma
andp0
are ignored.
- dt
Methods Summary
fitness
(T_k, N_k)validate_input
(t, x, sigma)Validate inputs to the model.
Methods Documentation
- validate_input(t, x, sigma)[source]¶
Validate inputs to the model.
- Parameters:
- tnumpy:array_like
times of observations
- xnumpy:array_like, optional
values observed at each time
- sigma
python:float
or numpy:array_like, optional errors in values x
- Returns:
- t, x, sigmanumpy:array_like,
python:float
orpython:None
validated and perhaps modified versions of inputs
- t, x, sigmanumpy:array_like,