PointMeasures¶
- class astropy.stats.PointMeasures(p0=0.05, gamma=None, ncp_prior=None)[source]¶
Bases:
FitnessFunc
Bayesian blocks fitness for point measures
- Parameters:
- p0
python:float
, optional False alarm probability, used to compute the prior on \(N_{\rm blocks}\) (see eq. 21 of Scargle 2013). If gamma is specified, p0 is ignored.
- ncp_prior
python:float
, optional If specified, use the value of
ncp_prior
to compute the prior as above, using the definition \({\tt ncp\_prior} = -\ln({\tt gamma})\). Ifncp_prior
is specified,gamma
andp0
are ignored.
- p0
Methods Summary
fitness
(a_k, b_k)validate_input
(t, x, sigma)Validate inputs to the model.
Methods Documentation
- validate_input(t, x, sigma)[source]¶
Validate inputs to the model.
- Parameters:
- tnumpy:array_like
times of observations
- xnumpy:array_like, optional
values observed at each time
- sigma
python:float
or numpy:array_like, optional errors in values x
- Returns:
- t, x, sigmanumpy:array_like,
python:float
orpython:None
validated and perhaps modified versions of inputs
- t, x, sigmanumpy:array_like,