ExponentialCutoffPowerLaw1D¶
- class astropy.modeling.powerlaws.ExponentialCutoffPowerLaw1D(amplitude=1, x_0=1, alpha=1, x_cutoff=1, **kwargs)[source]¶
Bases:
Fittable1DModel
One dimensional power law model with an exponential cutoff.
- Parameters:
- amplitude
python:float
Model amplitude
- x_0
python:float
Reference point
- alpha
python:float
Power law index
- x_cutoff
python:float
Cutoff point
- amplitude
See also
Notes
Model formula (with \(A\) for
amplitude
and \(\alpha\) foralpha
):\[f(x) = A (x / x_0) ^ {-\alpha} \exp (-x / x_{cutoff})\]Attributes Summary
This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or
None
if any units are accepted).Names of the parameters that describe models of this type.
Methods Summary
evaluate
(x, amplitude, x_0, alpha, x_cutoff)One dimensional exponential cutoff power law model function
fit_deriv
(x, amplitude, x_0, alpha, x_cutoff)One dimensional exponential cutoff power law derivative with respect to parameters
Attributes Documentation
- alpha = Parameter('alpha', value=1.0)¶
- amplitude = Parameter('amplitude', value=1.0)¶
- input_units¶
- param_names = ('amplitude', 'x_0', 'alpha', 'x_cutoff')¶
Names of the parameters that describe models of this type.
The parameters in this tuple are in the same order they should be passed in when initializing a model of a specific type. Some types of models, such as polynomial models, have a different number of parameters depending on some other property of the model, such as the degree.
When defining a custom model class the value of this attribute is automatically set by the
Parameter
attributes defined in the class body.
- x_0 = Parameter('x_0', value=1.0)¶
- x_cutoff = Parameter('x_cutoff', value=1.0)¶
Methods Documentation