Gaussian2D¶
- class astropy.modeling.functional_models.Gaussian2D(amplitude=1, x_mean=0, y_mean=0, x_stddev=None, y_stddev=None, theta=None, cov_matrix=None, **kwargs)[source]¶
Bases:
Fittable2DModel
Two dimensional Gaussian model.
- Parameters:
- amplitude
python:float
orQuantity
. Amplitude (peak value) of the Gaussian.
- x_mean
python:float
orQuantity
. Mean of the Gaussian in x.
- y_mean
python:float
orQuantity
. Mean of the Gaussian in y.
- x_stddev
python:float
orQuantity
or None. Standard deviation of the Gaussian in x before rotating by theta. Must be None if a covariance matrix (
cov_matrix
) is provided. If nocov_matrix
is given,None
means the default value (1).- y_stddev
python:float
orQuantity
or None. Standard deviation of the Gaussian in y before rotating by theta. Must be None if a covariance matrix (
cov_matrix
) is provided. If nocov_matrix
is given,None
means the default value (1).- theta
python:float
orQuantity
, optional. The rotation angle as an angular quantity (
Quantity
orAngle
) or a value in radians (as a float). The rotation angle increases counterclockwise. Must beNone
if a covariance matrix (cov_matrix
) is provided. If nocov_matrix
is given,None
means the default value (0).- cov_matrix
ndarray
, optional A 2x2 covariance matrix. If specified, overrides the
x_stddev
,y_stddev
, andtheta
defaults.
- amplitude
- Other Parameters:
- fixed
a
python:dict
, optional A dictionary
{parameter_name: boolean}
of parameters to not be varied during fitting. True means the parameter is held fixed. Alternatively thefixed
property of a parameter may be used.- tied
python:dict
, optional A dictionary
{parameter_name: callable}
of parameters which are linked to some other parameter. The dictionary values are callables providing the linking relationship. Alternatively thetied
property of a parameter may be used.- bounds
python:dict
, optional A dictionary
{parameter_name: value}
of lower and upper bounds of parameters. Keys are parameter names. Values are a list or a tuple of length 2 giving the desired range for the parameter. Alternatively, themin
andmax
properties of a parameter may be used.- eqcons
python:list
, optional A list of functions of length
n
such thateqcons[j](x0,*args) == 0.0
in a successfully optimized problem.- ineqcons
python:list
, optional A list of functions of length
n
such thatieqcons[j](x0,*args) >= 0.0
is a successfully optimized problem.
- fixed
See also
Notes
Either all or none of input
x, y
,[x,y]_mean
and[x,y]_stddev
must be provided consistently with compatible units or as unitless numbers.Model formula:
\[f(x, y) = A e^{-a\left(x - x_{0}\right)^{2} -b\left(x - x_{0}\right) \left(y - y_{0}\right) -c\left(y - y_{0}\right)^{2}}\]Using the following definitions:
\[ \begin{align}\begin{aligned}a = \left(\frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} + \frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right)\\b = \left(\frac{\sin{\left (2 \theta \right )}}{2 \sigma_{x}^{2}} - \frac{\sin{\left (2 \theta \right )}}{2 \sigma_{y}^{2}}\right)\\c = \left(\frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} + \frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right)\end{aligned}\end{align} \]- If using a
cov_matrix
, the model is of the form: - \[f(x, y) = A e^{-0.5 \left( \vec{x} - \vec{x}_{0}\right)^{T} \Sigma^{-1} \left(\vec{x} - \vec{x}_{0} \right)}\]
where \(\vec{x} = [x, y]\), \(\vec{x}_{0} = [x_{0}, y_{0}]\), and \(\Sigma\) is the covariance matrix:
\[\begin{split}\Sigma = \left(\begin{array}{ccc} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{array}\right)\end{split}\]\(\rho\) is the correlation between
x
andy
, which should be between -1 and +1. Positive correlation corresponds to atheta
in the range 0 to 90 degrees. Negative correlation corresponds to atheta
in the range of 0 to -90 degrees.See [1] for more details about the 2D Gaussian function.
References
Attributes Summary
This property is used to indicate what units or sets of units the evaluate method expects, and returns a dictionary mapping inputs to units (or
None
if any units are accepted).Names of the parameters that describe models of this type.
Gaussian full width at half maximum in X.
Gaussian full width at half maximum in Y.
Methods Summary
evaluate
(x, y, amplitude, x_mean, y_mean, ...)Two dimensional Gaussian function
fit_deriv
(x, y, amplitude, x_mean, y_mean, ...)Two dimensional Gaussian function derivative with respect to parameters
Attributes Documentation
- amplitude = Parameter('amplitude', value=1.0)¶
- input_units¶
- param_names = ('amplitude', 'x_mean', 'y_mean', 'x_stddev', 'y_stddev', 'theta')¶
Names of the parameters that describe models of this type.
The parameters in this tuple are in the same order they should be passed in when initializing a model of a specific type. Some types of models, such as polynomial models, have a different number of parameters depending on some other property of the model, such as the degree.
When defining a custom model class the value of this attribute is automatically set by the
Parameter
attributes defined in the class body.
- theta = Parameter('theta', value=0.0)¶
- x_fwhm¶
Gaussian full width at half maximum in X.
- x_mean = Parameter('x_mean', value=0.0)¶
- x_stddev = Parameter('x_stddev', value=1.0)¶
- y_fwhm¶
Gaussian full width at half maximum in Y.
- y_mean = Parameter('y_mean', value=0.0)¶
- y_stddev = Parameter('y_stddev', value=1.0)¶
Methods Documentation