TRFLSQFitter

class astropy.modeling.fitting.TRFLSQFitter(calc_uncertainties=False, use_min_max_bounds=False)[source]

Bases: _NLLSQFitter

Trust Region Reflective algorithm and least squares statistic.

Parameters:
calc_uncertaintiesbool

If the covarience matrix should be computed and set in the fit_info. Default: False

use_min_max_bounds: bool

If the set parameter bounds for a model will be enforced each given parameter while fitting via a simple min/max condition. A True setting will replicate how LevMarLSQFitter enforces bounds. Default: False

Attributes:
fit_info

A scipy.optimize.OptimizeResult class which contains all of the most recent fit information

Attributes Summary

supported_constraints

The constraint types supported by this fitter type.

Methods Summary

__call__(model, x, y[, z, weights, maxiter, ...])

Fit data to this model.

objective_function(fps, *args)

Function to minimize.

Attributes Documentation

supported_constraints = ['fixed', 'tied', 'bounds']

The constraint types supported by this fitter type.

Methods Documentation

__call__(model, x, y, z=None, weights=None, maxiter=100, acc=1e-07, epsilon=1.4901161193847656e-08, estimate_jacobian=False, filter_non_finite=False)

Fit data to this model.

Parameters:
modelFittableModel

model to fit to x, y, z

xarray

input coordinates

yarray

input coordinates

zarray, optional

input coordinates

weightsarray, optional

Weights for fitting. For data with Gaussian uncertainties, the weights should be 1/sigma.

maxiterpython:int

maximum number of iterations

accpython:float

Relative error desired in the approximate solution

epsilonpython:float

A suitable step length for the forward-difference approximation of the Jacobian (if model.fjac=None). If epsfcn is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.

estimate_jacobianbool

If False (default) and if the model has a fit_deriv method, it will be used. Otherwise the Jacobian will be estimated. If True, the Jacobian will be estimated in any case.

equivalenciespython:list or python:None, optional, keyword-only

List of additional equivalencies that are should be applied in case x, y and/or z have units. Default is None.

filter_non_finitebool, optional

Whether or not to filter data with non-finite values. Default is False

Returns:
model_copyFittableModel

a copy of the input model with parameters set by the fitter

objective_function(fps, *args)

Function to minimize.

Parameters:
fpspython:list

parameters returned by the fitter

argspython:list

[model, [weights], [input coordinates]]