Fitting with constraints ======================== `~astropy.modeling.fitting` support constraints, however, different fitters support different types of constraints. The `~astropy.modeling.fitting.Fitter.supported_constraints` attribute shows the type of constraints supported by a specific fitter:: >>> from astropy.modeling import fitting >>> fitting.LinearLSQFitter.supported_constraints ['fixed'] >>> fitting.LevMarLSQFitter.supported_constraints ['fixed', 'tied', 'bounds'] >>> fitting.SLSQPLSQFitter.supported_constraints ['bounds', 'eqcons', 'ineqcons', 'fixed', 'tied'] Fixed Parameter Constraint -------------------------- All fitters support fixed (frozen) parameters through the ``fixed`` argument to models or setting the `~astropy.modeling.Parameter.fixed` attribute directly on a parameter. For linear fitters, freezing a polynomial coefficient means that the corresponding term will be subtracted from the data before fitting a polynomial without that term to the result. For example, fixing ``c0`` in a polynomial model will fit a polynomial with the zero-th order term missing to the data minus that constant. The fixed coefficients and corresponding terms are restored to the fit polynomial and this is the polynomial returned from the fitter:: >>> import numpy as np >>> rng = np.random.default_rng(seed=12345) >>> from astropy.modeling import models, fitting >>> x = np.arange(1, 10, .1) >>> p1 = models.Polynomial1D(2, c0=[1, 1], c1=[2, 2], c2=[3, 3], ... n_models=2) >>> p1 # doctest: +FLOAT_CMP >>> y = p1(x, model_set_axis=False) >>> n = (rng.standard_normal(y.size)).reshape(y.shape) >>> p1.c0.fixed = True >>> pfit = fitting.LinearLSQFitter() >>> new_model = pfit(p1, x, y + n) # doctest: +IGNORE_WARNINGS >>> print(new_model) # doctest: +SKIP Model: Polynomial1D Inputs: ('x',) Outputs: ('y',) Model set size: 2 Degree: 2 Parameters: c0 c1 c2 --- ------------------ ------------------ 1.0 2.072116176718454 2.99115839177437 1.0 1.9818866652726403 3.0024208951927585 The syntax to fix the same parameter ``c0`` using an argument to the model instead of ``p1.c0.fixed = True`` would be:: >>> p1 = models.Polynomial1D(2, c0=[1, 1], c1=[2, 2], c2=[3, 3], ... n_models=2, fixed={'c0': True}) Bounded Constraints ------------------- Bounded fitting is supported through the ``bounds`` arguments to models or by setting `~astropy.modeling.Parameter.min` and `~astropy.modeling.Parameter.max` attributes on a parameter. Bounds for the `~astropy.modeling.fitting.LevMarLSQFitter` are always exactly satisfied--if the value of the parameter is outside the fitting interval, it will be reset to the value at the bounds. The `~astropy.modeling.fitting.SLSQPLSQFitter` optimization algorithm handles bounds internally. .. _tied: Tied Constraints ---------------- The `~astropy.modeling.Parameter.tied` constraint is often useful with :ref:`Compound models `. In this example we will read a spectrum from a file called ``spec.txt`` and fit Gaussians to the lines simultaneously while linking the flux of the OIII_1 and OIII_2 lines. .. plot:: :include-source: import numpy as np from astropy.io import ascii from astropy.utils.data import get_pkg_data_filename from astropy.modeling import models, fitting fname = get_pkg_data_filename('data/spec.txt', package='astropy.modeling.tests') spec = ascii.read(fname) wave = spec['lambda'] flux = spec['flux'] # Use the rest wavelengths of known lines as initial values for the fit. Hbeta = 4862.721 OIII_1 = 4958.911 OIII_2 = 5008.239 # Create Gaussian1D models for each of the Hbeta and OIII lines. h_beta = models.Gaussian1D(amplitude=34, mean=Hbeta, stddev=5) o3_2 = models.Gaussian1D(amplitude=170, mean=OIII_2, stddev=5) o3_1 = models.Gaussian1D(amplitude=57, mean=OIII_1, stddev=5) # Tie the ratio of the intensity of the two OIII lines. def tie_ampl(model): return model.amplitude_2 / 3.1 o3_1.amplitude.tied = tie_ampl # Also tie the wavelength of the Hbeta line to the OIII wavelength. def tie_wave(model): return model.mean_0 * OIII_1 / Hbeta o3_1.mean.tied = tie_wave # Create a Polynomial model to fit the continuum. mean_flux = flux.mean() cont = np.where(flux > mean_flux, mean_flux, flux) linfitter = fitting.LinearLSQFitter() poly_cont = linfitter(models.Polynomial1D(1), wave, cont) # Create a compound model for the three lines and the continuum. hbeta_combo = h_beta + o3_1 + o3_2 + poly_cont # Fit all lines simultaneously - # this will need one iteration more than the default of 100. fitter = fitting.LevMarLSQFitter() fitted_model = fitter(hbeta_combo, wave, flux, maxiter=111) fitted_lines = fitted_model(wave) from matplotlib import pyplot as plt fig = plt.figure(figsize=(9, 6)) p = plt.plot(wave, flux, label="data") p = plt.plot(wave, fitted_lines, 'r', label="fit") p = plt.legend() p = plt.xlabel("Wavelength") p = plt.ylabel("Flux") t = plt.text(4800, 70, 'Hbeta', rotation=90) t = plt.text(4900, 100, 'OIII_1', rotation=90) t = plt.text(4950, 180, 'OIII_2', rotation=90) plt.show()