Source code for astropy.timeseries.core
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from contextlib import contextmanager
from functools import wraps
from types import FunctionType
from astropy.table import QTable
__all__ = ["BaseTimeSeries", "autocheck_required_columns"]
COLUMN_RELATED_METHODS = [
"add_column",
"add_columns",
"keep_columns",
"remove_column",
"remove_columns",
"rename_column",
]
[docs]def autocheck_required_columns(cls):
"""
This is a decorator that ensures that the table contains specific
methods indicated by the _required_columns attribute. The aim is to
decorate all methods that might affect the columns in the table and check
for consistency after the methods have been run.
"""
def decorator_method(method):
@wraps(method)
def wrapper(self, *args, **kwargs):
result = method(self, *args, **kwargs)
self._check_required_columns()
return result
return wrapper
for name in COLUMN_RELATED_METHODS:
if not hasattr(cls, name) or not isinstance(getattr(cls, name), FunctionType):
raise ValueError(f"{name} is not a valid method")
setattr(cls, name, decorator_method(getattr(cls, name)))
return cls
[docs]class BaseTimeSeries(QTable):
_required_columns = None
_required_columns_enabled = True
# If _required_column_relax is True, we don't require the columns to be
# present but we do require them to be the correct ones IF present. Note
# that this is a temporary state - as soon as the required columns
# are all present, we toggle this to False
_required_columns_relax = False
def _check_required_columns(self):
def as_scalar_or_list_str(obj):
if not hasattr(obj, "__len__"):
return f"'{obj}'"
elif len(obj) == 1:
return f"'{obj[0]}'"
else:
return str(obj)
if not self._required_columns_enabled:
return
if self._required_columns is not None:
if self._required_columns_relax:
required_columns = self._required_columns[: len(self.colnames)]
else:
required_columns = self._required_columns
plural = "s" if len(required_columns) > 1 else ""
if not self._required_columns_relax and len(self.colnames) == 0:
raise ValueError(
f"{self.__class__.__name__} object is invalid - expected"
f" '{required_columns[0]}' as the first column{plural} but time"
" series has no columns"
)
elif self.colnames[: len(required_columns)] != required_columns:
raise ValueError(
f"{self.__class__.__name__} object is invalid - expected"
f" {as_scalar_or_list_str(required_columns)} as the first"
f" column{plural} but found"
f" {as_scalar_or_list_str(self.colnames[: len(required_columns)])}"
)
if (
self._required_columns_relax
and self._required_columns
== self.colnames[: len(self._required_columns)]
):
self._required_columns_relax = False
@contextmanager
def _delay_required_column_checks(self):
self._required_columns_enabled = False
yield
self._required_columns_enabled = True
self._check_required_columns()