Source code for astropy.nddata.nduncertainty

# Licensed under a 3-clause BSD style license - see LICENSE.rst

import weakref
from abc import ABCMeta, abstractmethod
from copy import deepcopy

import numpy as np

# from astropy.utils.compat import ignored
from astropy import log
from astropy.units import Quantity, Unit, UnitConversionError

__all__ = [
    "MissingDataAssociationException",
    "IncompatibleUncertaintiesException",
    "NDUncertainty",
    "StdDevUncertainty",
    "UnknownUncertainty",
    "VarianceUncertainty",
    "InverseVariance",
]


[docs]class IncompatibleUncertaintiesException(Exception): """This exception should be used to indicate cases in which uncertainties with two different classes can not be propagated. """
[docs]class MissingDataAssociationException(Exception): """This exception should be used to indicate that an uncertainty instance has not been associated with a parent `~astropy.nddata.NDData` object. """
[docs]class NDUncertainty(metaclass=ABCMeta): """This is the metaclass for uncertainty classes used with `NDData`. Parameters ---------- array : any type, optional The array or value (the parameter name is due to historical reasons) of the uncertainty. `numpy.ndarray`, `~astropy.units.Quantity` or `NDUncertainty` subclasses are recommended. If the `array` is `list`-like or `numpy.ndarray`-like it will be cast to a plain `numpy.ndarray`. Default is ``None``. unit : unit-like, optional Unit for the uncertainty ``array``. Strings that can be converted to a `~astropy.units.Unit` are allowed. Default is ``None``. copy : `bool`, optional Indicates whether to save the `array` as a copy. ``True`` copies it before saving, while ``False`` tries to save every parameter as reference. Note however that it is not always possible to save the input as reference. Default is ``True``. Raises ------ IncompatibleUncertaintiesException If given another `NDUncertainty`-like class as ``array`` if their ``uncertainty_type`` is different. """ def __init__(self, array=None, copy=True, unit=None): if isinstance(array, NDUncertainty): # Given an NDUncertainty class or subclass check that the type # is the same. if array.uncertainty_type != self.uncertainty_type: raise IncompatibleUncertaintiesException # Check if two units are given and take the explicit one then. if unit is not None and unit != array._unit: # TODO : Clarify it (see NDData.init for same problem)? log.info("overwriting Uncertainty's current unit with specified unit.") elif array._unit is not None: unit = array.unit array = array.array elif isinstance(array, Quantity): # Check if two units are given and take the explicit one then. if unit is not None and array.unit is not None and unit != array.unit: log.info("overwriting Quantity's current unit with specified unit.") elif array.unit is not None: unit = array.unit array = array.value if unit is None: self._unit = None else: self._unit = Unit(unit) if copy: array = deepcopy(array) unit = deepcopy(unit) self.array = array self.parent_nddata = None # no associated NDData - until it is set! @property @abstractmethod def uncertainty_type(self): """`str` : Short description of the type of uncertainty. Defined as abstract property so subclasses *have* to override this. """ return None @property def supports_correlated(self): """`bool` : Supports uncertainty propagation with correlated \ uncertainties? .. versionadded:: 1.2 """ return False @property def array(self): """`numpy.ndarray` : the uncertainty's value.""" return self._array @array.setter def array(self, value): if isinstance(value, (list, np.ndarray)): value = np.array(value, subok=False, copy=False) self._array = value @property def unit(self): """`~astropy.units.Unit` : The unit of the uncertainty, if any.""" return self._unit @unit.setter def unit(self, value): """ The unit should be set to a value consistent with the parent NDData unit and the uncertainty type. """ if value is not None: # Check the hidden attribute below, not the property. The property # raises an exception if there is no parent_nddata. if self._parent_nddata is not None: parent_unit = self.parent_nddata.unit try: # Check for consistency with the unit of the parent_nddata self._data_unit_to_uncertainty_unit(parent_unit).to(value) except UnitConversionError: raise UnitConversionError( "Unit {} is incompatible with unit {} of parent nddata".format( value, parent_unit ) ) self._unit = Unit(value) else: self._unit = value @property def quantity(self): """ This uncertainty as an `~astropy.units.Quantity` object. """ return Quantity(self.array, self.unit, copy=False, dtype=self.array.dtype) @property def parent_nddata(self): """`NDData` : reference to `NDData` instance with this uncertainty. In case the reference is not set uncertainty propagation will not be possible since propagation might need the uncertain data besides the uncertainty. """ no_parent_message = "uncertainty is not associated with an NDData object" parent_lost_message = ( "the associated NDData object was deleted and cannot be accessed " "anymore. You can prevent the NDData object from being deleted by " "assigning it to a variable. If this happened after unpickling " "make sure you pickle the parent not the uncertainty directly." ) try: parent = self._parent_nddata except AttributeError: raise MissingDataAssociationException(no_parent_message) else: if parent is None: raise MissingDataAssociationException(no_parent_message) else: # The NDData is saved as weak reference so we must call it # to get the object the reference points to. However because # we have a weak reference here it's possible that the parent # was deleted because its reference count dropped to zero. if isinstance(self._parent_nddata, weakref.ref): resolved_parent = self._parent_nddata() if resolved_parent is None: log.info(parent_lost_message) return resolved_parent else: log.info("parent_nddata should be a weakref to an NDData object.") return self._parent_nddata @parent_nddata.setter def parent_nddata(self, value): if value is not None and not isinstance(value, weakref.ref): # Save a weak reference on the uncertainty that points to this # instance of NDData. Direct references should NOT be used: # https://github.com/astropy/astropy/pull/4799#discussion_r61236832 value = weakref.ref(value) # Set _parent_nddata here and access below with the property because value # is a weakref self._parent_nddata = value # set uncertainty unit to that of the parent if it was not already set, unless initializing # with empty parent (Value=None) if value is not None: parent_unit = self.parent_nddata.unit if self.unit is None: if parent_unit is None: self.unit = None else: # Set the uncertainty's unit to the appropriate value self.unit = self._data_unit_to_uncertainty_unit(parent_unit) else: # Check that units of uncertainty are compatible with those of # the parent. If they are, no need to change units of the # uncertainty or the data. If they are not, let the user know. unit_from_data = self._data_unit_to_uncertainty_unit(parent_unit) try: unit_from_data.to(self.unit) except UnitConversionError: raise UnitConversionError( "Unit {} of uncertainty " "incompatible with unit {} of " "data".format(self.unit, parent_unit) ) @abstractmethod def _data_unit_to_uncertainty_unit(self, value): """ Subclasses must override this property. It should take in a data unit and return the correct unit for the uncertainty given the uncertainty type. """ return None def __repr__(self): prefix = self.__class__.__name__ + "(" try: body = np.array2string(self.array, separator=", ", prefix=prefix) except AttributeError: # In case it wasn't possible to use array2string body = str(self.array) return "".join([prefix, body, ")"]) def __getstate__(self): # Because of the weak reference the class wouldn't be picklable. try: return self._array, self._unit, self.parent_nddata except MissingDataAssociationException: # In case there's no parent return self._array, self._unit, None def __setstate__(self, state): if len(state) != 3: raise TypeError("The state should contain 3 items.") self._array = state[0] self._unit = state[1] parent = state[2] if parent is not None: parent = weakref.ref(parent) self._parent_nddata = parent def __getitem__(self, item): """Normal slicing on the array, keep the unit and return a reference.""" return self.__class__(self.array[item], unit=self.unit, copy=False)
[docs] def propagate(self, operation, other_nddata, result_data, correlation): """Calculate the resulting uncertainty given an operation on the data. .. versionadded:: 1.2 Parameters ---------- operation : callable The operation that is performed on the `NDData`. Supported are `numpy.add`, `numpy.subtract`, `numpy.multiply` and `numpy.true_divide` (or `numpy.divide`). other_nddata : `NDData` instance The second operand in the arithmetic operation. result_data : `~astropy.units.Quantity` or ndarray The result of the arithmetic operations on the data. correlation : `numpy.ndarray` or number The correlation (rho) is defined between the uncertainties in sigma_AB = sigma_A * sigma_B * rho. A value of ``0`` means uncorrelated operands. Returns ------- resulting_uncertainty : `NDUncertainty` instance Another instance of the same `NDUncertainty` subclass containing the uncertainty of the result. Raises ------ ValueError If the ``operation`` is not supported or if correlation is not zero but the subclass does not support correlated uncertainties. Notes ----- First this method checks if a correlation is given and the subclass implements propagation with correlated uncertainties. Then the second uncertainty is converted (or an Exception is raised) to the same class in order to do the propagation. Then the appropriate propagation method is invoked and the result is returned. """ # Check if the subclass supports correlation if not self.supports_correlated: if isinstance(correlation, np.ndarray) or correlation != 0: raise ValueError( "{} does not support uncertainty propagation" " with correlation." "".format(self.__class__.__name__) ) # Get the other uncertainty (and convert it to a matching one) other_uncert = self._convert_uncertainty(other_nddata.uncertainty) if operation.__name__ == "add": result = self._propagate_add(other_uncert, result_data, correlation) elif operation.__name__ == "subtract": result = self._propagate_subtract(other_uncert, result_data, correlation) elif operation.__name__ == "multiply": result = self._propagate_multiply(other_uncert, result_data, correlation) elif operation.__name__ in ["true_divide", "divide"]: result = self._propagate_divide(other_uncert, result_data, correlation) else: raise ValueError("unsupported operation") return self.__class__(result, copy=False)
def _convert_uncertainty(self, other_uncert): """Checks if the uncertainties are compatible for propagation. Checks if the other uncertainty is `NDUncertainty`-like and if so verify that the uncertainty_type is equal. If the latter is not the case try returning ``self.__class__(other_uncert)``. Parameters ---------- other_uncert : `NDUncertainty` subclass The other uncertainty. Returns ------- other_uncert : `NDUncertainty` subclass but converted to a compatible `NDUncertainty` subclass if possible and necessary. Raises ------ IncompatibleUncertaintiesException: If the other uncertainty cannot be converted to a compatible `NDUncertainty` subclass. """ if isinstance(other_uncert, NDUncertainty): if self.uncertainty_type == other_uncert.uncertainty_type: return other_uncert else: return self.__class__(other_uncert) else: raise IncompatibleUncertaintiesException @abstractmethod def _propagate_add(self, other_uncert, result_data, correlation): return None @abstractmethod def _propagate_subtract(self, other_uncert, result_data, correlation): return None @abstractmethod def _propagate_multiply(self, other_uncert, result_data, correlation): return None @abstractmethod def _propagate_divide(self, other_uncert, result_data, correlation): return None
[docs] def represent_as(self, other_uncert): """Convert this uncertainty to a different uncertainty type. Parameters ---------- other_uncert : `NDUncertainty` subclass The `NDUncertainty` subclass to convert to. Returns ------- resulting_uncertainty : `NDUncertainty` instance An instance of ``other_uncert`` subclass containing the uncertainty converted to the new uncertainty type. Raises ------ TypeError If either the initial or final subclasses do not support conversion, a `TypeError` is raised. """ as_variance = getattr(self, "_convert_to_variance", None) if as_variance is None: raise TypeError( f"{type(self)} does not support conversion to another uncertainty type." ) from_variance = getattr(other_uncert, "_convert_from_variance", None) if from_variance is None: raise TypeError( f"{other_uncert.__name__} does not support conversion from " "another uncertainty type." ) return from_variance(as_variance())
[docs]class UnknownUncertainty(NDUncertainty): """This class implements any unknown uncertainty type. The main purpose of having an unknown uncertainty class is to prevent uncertainty propagation. Parameters ---------- args, kwargs : see `NDUncertainty` """ @property def supports_correlated(self): """`False` : Uncertainty propagation is *not* possible for this class.""" return False @property def uncertainty_type(self): """``"unknown"`` : `UnknownUncertainty` implements any unknown \ uncertainty type. """ return "unknown" def _data_unit_to_uncertainty_unit(self, value): """ No way to convert if uncertainty is unknown. """ return None def _convert_uncertainty(self, other_uncert): """Raise an Exception because unknown uncertainty types cannot implement propagation. """ msg = "Uncertainties of unknown type cannot be propagated." raise IncompatibleUncertaintiesException(msg) def _propagate_add(self, other_uncert, result_data, correlation): """Not possible for unknown uncertainty types.""" return None def _propagate_subtract(self, other_uncert, result_data, correlation): return None def _propagate_multiply(self, other_uncert, result_data, correlation): return None def _propagate_divide(self, other_uncert, result_data, correlation): return None
class _VariancePropagationMixin: """ Propagation of uncertainties for variances, also used to perform error propagation for variance-like uncertainties (standard deviation and inverse variance). """ def _propagate_add_sub( self, other_uncert, result_data, correlation, subtract=False, to_variance=lambda x: x, from_variance=lambda x: x, ): """ Error propagation for addition or subtraction of variance or variance-like uncertainties. Uncertainties are calculated using the formulae for variance but can be used for uncertainty convertible to a variance. Parameters ---------- other_uncert : `~astropy.nddata.NDUncertainty` instance The uncertainty, if any, of the other operand. result_data : `~astropy.nddata.NDData` instance The results of the operation on the data. correlation : float or array-like Correlation of the uncertainties. subtract : bool, optional If ``True``, propagate for subtraction, otherwise propagate for addition. to_variance : function, optional Function that will transform the input uncertainties to variance. The default assumes the uncertainty is the variance. from_variance : function, optional Function that will convert from variance to the input uncertainty. The default assumes the uncertainty is the variance. """ if subtract: correlation_sign = -1 else: correlation_sign = 1 try: result_unit_sq = result_data.unit**2 except AttributeError: result_unit_sq = None if other_uncert.array is not None: # Formula: sigma**2 = dB if other_uncert.unit is not None and result_unit_sq != to_variance( other_uncert.unit ): # If the other uncertainty has a unit and this unit differs # from the unit of the result convert it to the results unit other = ( to_variance(other_uncert.array << other_uncert.unit) .to(result_unit_sq) .value ) else: other = to_variance(other_uncert.array) else: other = 0 if self.array is not None: # Formula: sigma**2 = dA if ( self.unit is not None and to_variance(self.unit) != self.parent_nddata.unit**2 ): # If the uncertainty has a different unit than the result we # need to convert it to the results unit. this = to_variance(self.array << self.unit).to(result_unit_sq).value else: this = to_variance(self.array) else: this = 0 # Formula: sigma**2 = dA + dB +/- 2*cor*sqrt(dA*dB) # Formula: sigma**2 = sigma_other + sigma_self +/- 2*cor*sqrt(dA*dB) # (sign depends on whether addition or subtraction) # Determine the result depending on the correlation if isinstance(correlation, np.ndarray) or correlation != 0: corr = 2 * correlation * np.sqrt(this * other) result = this + other + correlation_sign * corr else: result = this + other return from_variance(result) def _propagate_multiply_divide( self, other_uncert, result_data, correlation, divide=False, to_variance=lambda x: x, from_variance=lambda x: x, ): """ Error propagation for multiplication or division of variance or variance-like uncertainties. Uncertainties are calculated using the formulae for variance but can be used for uncertainty convertible to a variance. Parameters ---------- other_uncert : `~astropy.nddata.NDUncertainty` instance The uncertainty, if any, of the other operand. result_data : `~astropy.nddata.NDData` instance The results of the operation on the data. correlation : float or array-like Correlation of the uncertainties. divide : bool, optional If ``True``, propagate for division, otherwise propagate for multiplication. to_variance : function, optional Function that will transform the input uncertainties to variance. The default assumes the uncertainty is the variance. from_variance : function, optional Function that will convert from variance to the input uncertainty. The default assumes the uncertainty is the variance. """ # For multiplication we don't need the result as quantity if isinstance(result_data, Quantity): result_data = result_data.value if divide: correlation_sign = -1 else: correlation_sign = 1 if other_uncert.array is not None: # We want the result to have a unit consistent with the parent, so # we only need to convert the unit of the other uncertainty if it # is different from its data's unit. if ( other_uncert.unit and to_variance(1 * other_uncert.unit) != ((1 * other_uncert.parent_nddata.unit) ** 2).unit ): d_b = ( to_variance(other_uncert.array << other_uncert.unit) .to((1 * other_uncert.parent_nddata.unit) ** 2) .value ) else: d_b = to_variance(other_uncert.array) # Formula: sigma**2 = |A|**2 * d_b right = np.abs(self.parent_nddata.data**2 * d_b) else: right = 0 if self.array is not None: # Just the reversed case if ( self.unit and to_variance(1 * self.unit) != ((1 * self.parent_nddata.unit) ** 2).unit ): d_a = ( to_variance(self.array << self.unit) .to((1 * self.parent_nddata.unit) ** 2) .value ) else: d_a = to_variance(self.array) # Formula: sigma**2 = |B|**2 * d_a left = np.abs(other_uncert.parent_nddata.data**2 * d_a) else: left = 0 # Multiplication # # The fundamental formula is: # sigma**2 = |AB|**2*(d_a/A**2+d_b/B**2+2*sqrt(d_a)/A*sqrt(d_b)/B*cor) # # This formula is not very handy since it generates NaNs for every # zero in A and B. So we rewrite it: # # Multiplication Formula: # sigma**2 = (d_a*B**2 + d_b*A**2 + (2 * cor * ABsqrt(dAdB))) # sigma**2 = (left + right + (2 * cor * ABsqrt(dAdB))) # # Division # # The fundamental formula for division is: # sigma**2 = |A/B|**2*(d_a/A**2+d_b/B**2-2*sqrt(d_a)/A*sqrt(d_b)/B*cor) # # As with multiplication, it is convenient to rewrite this to avoid # nans where A is zero. # # Division formula (rewritten): # sigma**2 = d_a/B**2 + (A/B)**2 * d_b/B**2 # - 2 * cor * A *sqrt(dAdB) / B**3 # sigma**2 = d_a/B**2 + (A/B)**2 * d_b/B**2 # - 2*cor * sqrt(d_a)/B**2 * sqrt(d_b) * A / B # sigma**2 = multiplication formula/B**4 (and sign change in # the correlation) if isinstance(correlation, np.ndarray) or correlation != 0: corr = ( 2 * correlation * np.sqrt(d_a * d_b) * self.parent_nddata.data * other_uncert.parent_nddata.data ) else: corr = 0 if divide: return from_variance( (left + right + correlation_sign * corr) / other_uncert.parent_nddata.data**4 ) else: return from_variance(left + right + correlation_sign * corr)
[docs]class StdDevUncertainty(_VariancePropagationMixin, NDUncertainty): """Standard deviation uncertainty assuming first order gaussian error propagation. This class implements uncertainty propagation for ``addition``, ``subtraction``, ``multiplication`` and ``division`` with other instances of `StdDevUncertainty`. The class can handle if the uncertainty has a unit that differs from (but is convertible to) the parents `NDData` unit. The unit of the resulting uncertainty will have the same unit as the resulting data. Also support for correlation is possible but requires the correlation as input. It cannot handle correlation determination itself. Parameters ---------- args, kwargs : see `NDUncertainty` Examples -------- `StdDevUncertainty` should always be associated with an `NDData`-like instance, either by creating it during initialization:: >>> from astropy.nddata import NDData, StdDevUncertainty >>> ndd = NDData([1,2,3], unit='m', ... uncertainty=StdDevUncertainty([0.1, 0.1, 0.1])) >>> ndd.uncertainty # doctest: +FLOAT_CMP StdDevUncertainty([0.1, 0.1, 0.1]) or by setting it manually on the `NDData` instance:: >>> ndd.uncertainty = StdDevUncertainty([0.2], unit='m', copy=True) >>> ndd.uncertainty # doctest: +FLOAT_CMP StdDevUncertainty([0.2]) the uncertainty ``array`` can also be set directly:: >>> ndd.uncertainty.array = 2 >>> ndd.uncertainty StdDevUncertainty(2) .. note:: The unit will not be displayed. """ @property def supports_correlated(self): """`True` : `StdDevUncertainty` allows to propagate correlated \ uncertainties. ``correlation`` must be given, this class does not implement computing it by itself. """ return True @property def uncertainty_type(self): """``"std"`` : `StdDevUncertainty` implements standard deviation.""" return "std" def _convert_uncertainty(self, other_uncert): if isinstance(other_uncert, StdDevUncertainty): return other_uncert else: raise IncompatibleUncertaintiesException def _propagate_add(self, other_uncert, result_data, correlation): return super()._propagate_add_sub( other_uncert, result_data, correlation, subtract=False, to_variance=np.square, from_variance=np.sqrt, ) def _propagate_subtract(self, other_uncert, result_data, correlation): return super()._propagate_add_sub( other_uncert, result_data, correlation, subtract=True, to_variance=np.square, from_variance=np.sqrt, ) def _propagate_multiply(self, other_uncert, result_data, correlation): return super()._propagate_multiply_divide( other_uncert, result_data, correlation, divide=False, to_variance=np.square, from_variance=np.sqrt, ) def _propagate_divide(self, other_uncert, result_data, correlation): return super()._propagate_multiply_divide( other_uncert, result_data, correlation, divide=True, to_variance=np.square, from_variance=np.sqrt, ) def _data_unit_to_uncertainty_unit(self, value): return value def _convert_to_variance(self): new_array = None if self.array is None else self.array**2 new_unit = None if self.unit is None else self.unit**2 return VarianceUncertainty(new_array, unit=new_unit) @classmethod def _convert_from_variance(cls, var_uncert): new_array = None if var_uncert.array is None else var_uncert.array ** (1 / 2) new_unit = None if var_uncert.unit is None else var_uncert.unit ** (1 / 2) return cls(new_array, unit=new_unit)
[docs]class VarianceUncertainty(_VariancePropagationMixin, NDUncertainty): """ Variance uncertainty assuming first order Gaussian error propagation. This class implements uncertainty propagation for ``addition``, ``subtraction``, ``multiplication`` and ``division`` with other instances of `VarianceUncertainty`. The class can handle if the uncertainty has a unit that differs from (but is convertible to) the parents `NDData` unit. The unit of the resulting uncertainty will be the square of the unit of the resulting data. Also support for correlation is possible but requires the correlation as input. It cannot handle correlation determination itself. Parameters ---------- args, kwargs : see `NDUncertainty` Examples -------- Compare this example to that in `StdDevUncertainty`; the uncertainties in the examples below are equivalent to the uncertainties in `StdDevUncertainty`. `VarianceUncertainty` should always be associated with an `NDData`-like instance, either by creating it during initialization:: >>> from astropy.nddata import NDData, VarianceUncertainty >>> ndd = NDData([1,2,3], unit='m', ... uncertainty=VarianceUncertainty([0.01, 0.01, 0.01])) >>> ndd.uncertainty # doctest: +FLOAT_CMP VarianceUncertainty([0.01, 0.01, 0.01]) or by setting it manually on the `NDData` instance:: >>> ndd.uncertainty = VarianceUncertainty([0.04], unit='m^2', copy=True) >>> ndd.uncertainty # doctest: +FLOAT_CMP VarianceUncertainty([0.04]) the uncertainty ``array`` can also be set directly:: >>> ndd.uncertainty.array = 4 >>> ndd.uncertainty VarianceUncertainty(4) .. note:: The unit will not be displayed. """ @property def uncertainty_type(self): """``"var"`` : `VarianceUncertainty` implements variance.""" return "var" @property def supports_correlated(self): """`True` : `VarianceUncertainty` allows to propagate correlated \ uncertainties. ``correlation`` must be given, this class does not implement computing it by itself. """ return True def _propagate_add(self, other_uncert, result_data, correlation): return super()._propagate_add_sub( other_uncert, result_data, correlation, subtract=False ) def _propagate_subtract(self, other_uncert, result_data, correlation): return super()._propagate_add_sub( other_uncert, result_data, correlation, subtract=True ) def _propagate_multiply(self, other_uncert, result_data, correlation): return super()._propagate_multiply_divide( other_uncert, result_data, correlation, divide=False ) def _propagate_divide(self, other_uncert, result_data, correlation): return super()._propagate_multiply_divide( other_uncert, result_data, correlation, divide=True ) def _data_unit_to_uncertainty_unit(self, value): return value**2 def _convert_to_variance(self): return self @classmethod def _convert_from_variance(cls, var_uncert): return var_uncert
def _inverse(x): """Just a simple inverse for use in the InverseVariance""" return 1 / x
[docs]class InverseVariance(_VariancePropagationMixin, NDUncertainty): """ Inverse variance uncertainty assuming first order Gaussian error propagation. This class implements uncertainty propagation for ``addition``, ``subtraction``, ``multiplication`` and ``division`` with other instances of `InverseVariance`. The class can handle if the uncertainty has a unit that differs from (but is convertible to) the parents `NDData` unit. The unit of the resulting uncertainty will the inverse square of the unit of the resulting data. Also support for correlation is possible but requires the correlation as input. It cannot handle correlation determination itself. Parameters ---------- args, kwargs : see `NDUncertainty` Examples -------- Compare this example to that in `StdDevUncertainty`; the uncertainties in the examples below are equivalent to the uncertainties in `StdDevUncertainty`. `InverseVariance` should always be associated with an `NDData`-like instance, either by creating it during initialization:: >>> from astropy.nddata import NDData, InverseVariance >>> ndd = NDData([1,2,3], unit='m', ... uncertainty=InverseVariance([100, 100, 100])) >>> ndd.uncertainty # doctest: +FLOAT_CMP InverseVariance([100, 100, 100]) or by setting it manually on the `NDData` instance:: >>> ndd.uncertainty = InverseVariance([25], unit='1/m^2', copy=True) >>> ndd.uncertainty # doctest: +FLOAT_CMP InverseVariance([25]) the uncertainty ``array`` can also be set directly:: >>> ndd.uncertainty.array = 0.25 >>> ndd.uncertainty InverseVariance(0.25) .. note:: The unit will not be displayed. """ @property def uncertainty_type(self): """``"ivar"`` : `InverseVariance` implements inverse variance.""" return "ivar" @property def supports_correlated(self): """`True` : `InverseVariance` allows to propagate correlated \ uncertainties. ``correlation`` must be given, this class does not implement computing it by itself. """ return True def _propagate_add(self, other_uncert, result_data, correlation): return super()._propagate_add_sub( other_uncert, result_data, correlation, subtract=False, to_variance=_inverse, from_variance=_inverse, ) def _propagate_subtract(self, other_uncert, result_data, correlation): return super()._propagate_add_sub( other_uncert, result_data, correlation, subtract=True, to_variance=_inverse, from_variance=_inverse, ) def _propagate_multiply(self, other_uncert, result_data, correlation): return super()._propagate_multiply_divide( other_uncert, result_data, correlation, divide=False, to_variance=_inverse, from_variance=_inverse, ) def _propagate_divide(self, other_uncert, result_data, correlation): return super()._propagate_multiply_divide( other_uncert, result_data, correlation, divide=True, to_variance=_inverse, from_variance=_inverse, ) def _data_unit_to_uncertainty_unit(self, value): return 1 / value**2 def _convert_to_variance(self): new_array = None if self.array is None else 1 / self.array new_unit = None if self.unit is None else 1 / self.unit return VarianceUncertainty(new_array, unit=new_unit) @classmethod def _convert_from_variance(cls, var_uncert): new_array = None if var_uncert.array is None else 1 / var_uncert.array new_unit = None if var_uncert.unit is None else 1 / var_uncert.unit return cls(new_array, unit=new_unit)