# Licensed under a 3-clause BSD style license - see LICENSE.rst
# pylint: disable=invalid-name
"""
Optimization algorithms used in `~astropy.modeling.fitting`.
"""
import abc
import warnings
import numpy as np
from astropy.utils.exceptions import AstropyUserWarning
__all__ = ["Optimization", "SLSQP", "Simplex"]
# Maximum number of iterations
DEFAULT_MAXITER = 100
# Step for the forward difference approximation of the Jacobian
DEFAULT_EPS = np.sqrt(np.finfo(float).eps)
# Default requested accuracy
DEFAULT_ACC = 1e-07
DEFAULT_BOUNDS = (-(10**12), 10**12)
[docs]class Optimization(metaclass=abc.ABCMeta):
"""
Base class for optimizers.
Parameters
----------
opt_method : callable
Implements optimization method
Notes
-----
The base Optimizer does not support any constraints by default; individual
optimizers should explicitly set this list to the specific constraints
it supports.
"""
supported_constraints = []
def __init__(self, opt_method):
self._opt_method = opt_method
self._maxiter = DEFAULT_MAXITER
self._eps = DEFAULT_EPS
self._acc = DEFAULT_ACC
@property
def maxiter(self):
"""Maximum number of iterations"""
return self._maxiter
@maxiter.setter
def maxiter(self, val):
"""Set maxiter"""
self._maxiter = val
@property
def eps(self):
"""Step for the forward difference approximation of the Jacobian"""
return self._eps
@eps.setter
def eps(self, val):
"""Set eps value"""
self._eps = val
@property
def acc(self):
"""Requested accuracy"""
return self._acc
@acc.setter
def acc(self, val):
"""Set accuracy"""
self._acc = val
def __repr__(self):
fmt = f"{self.__class__.__name__}()"
return fmt
@property
def opt_method(self):
"""Return the optimization method."""
return self._opt_method
[docs] @abc.abstractmethod
def __call__(self):
raise NotImplementedError("Subclasses should implement this method")
[docs]class SLSQP(Optimization):
"""
Sequential Least Squares Programming optimization algorithm.
The algorithm is described in [1]_. It supports tied and fixed
parameters, as well as bounded constraints. Uses
`scipy.optimize.fmin_slsqp`.
References
----------
.. [1] http://www.netlib.org/toms/733
"""
supported_constraints = ["bounds", "eqcons", "ineqcons", "fixed", "tied"]
def __init__(self):
from scipy.optimize import fmin_slsqp
super().__init__(fmin_slsqp)
self.fit_info = {
"final_func_val": None,
"numiter": None,
"exit_mode": None,
"message": None,
}
[docs] def __call__(self, objfunc, initval, fargs, **kwargs):
"""
Run the solver.
Parameters
----------
objfunc : callable
objection function
initval : iterable
initial guess for the parameter values
fargs : tuple
other arguments to be passed to the statistic function
kwargs : dict
other keyword arguments to be passed to the solver
"""
kwargs["iter"] = kwargs.pop("maxiter", self._maxiter)
if "epsilon" not in kwargs:
kwargs["epsilon"] = self._eps
if "acc" not in kwargs:
kwargs["acc"] = self._acc
# Get the verbosity level
disp = kwargs.pop("verblevel", None)
# set the values of constraints to match the requirements of fmin_slsqp
model = fargs[0]
pars = [getattr(model, name) for name in model.param_names]
bounds = [par.bounds for par in pars if not (par.fixed or par.tied)]
bounds = np.asarray(bounds)
for i in bounds:
if i[0] is None:
i[0] = DEFAULT_BOUNDS[0]
if i[1] is None:
i[1] = DEFAULT_BOUNDS[1]
# older versions of scipy require this array to be float
bounds = np.asarray(bounds, dtype=float)
eqcons = np.array(model.eqcons)
ineqcons = np.array(model.ineqcons)
fitparams, final_func_val, numiter, exit_mode, mess = self.opt_method(
objfunc,
initval,
args=fargs,
full_output=True,
disp=disp,
bounds=bounds,
eqcons=eqcons,
ieqcons=ineqcons,
**kwargs,
)
self.fit_info["final_func_val"] = final_func_val
self.fit_info["numiter"] = numiter
self.fit_info["exit_mode"] = exit_mode
self.fit_info["message"] = mess
if exit_mode != 0:
warnings.warn(
"The fit may be unsuccessful; check "
"fit_info['message'] for more information.",
AstropyUserWarning,
)
return fitparams, self.fit_info
[docs]class Simplex(Optimization):
"""
Neald-Mead (downhill simplex) algorithm.
This algorithm [1]_ only uses function values, not derivatives.
Uses `scipy.optimize.fmin`.
References
----------
.. [1] Nelder, J.A. and Mead, R. (1965), "A simplex method for function
minimization", The Computer Journal, 7, pp. 308-313
"""
supported_constraints = ["bounds", "fixed", "tied"]
def __init__(self):
from scipy.optimize import fmin as simplex
super().__init__(simplex)
self.fit_info = {
"final_func_val": None,
"numiter": None,
"exit_mode": None,
"num_function_calls": None,
}
[docs] def __call__(self, objfunc, initval, fargs, **kwargs):
"""
Run the solver.
Parameters
----------
objfunc : callable
objection function
initval : iterable
initial guess for the parameter values
fargs : tuple
other arguments to be passed to the statistic function
kwargs : dict
other keyword arguments to be passed to the solver
"""
if "maxiter" not in kwargs:
kwargs["maxiter"] = self._maxiter
if "acc" in kwargs:
self._acc = kwargs["acc"]
kwargs.pop("acc")
if "xtol" in kwargs:
self._acc = kwargs["xtol"]
kwargs.pop("xtol")
# Get the verbosity level
disp = kwargs.pop("verblevel", None)
fitparams, final_func_val, numiter, funcalls, exit_mode = self.opt_method(
objfunc,
initval,
args=fargs,
xtol=self._acc,
disp=disp,
full_output=True,
**kwargs,
)
self.fit_info["final_func_val"] = final_func_val
self.fit_info["numiter"] = numiter
self.fit_info["exit_mode"] = exit_mode
self.fit_info["num_function_calls"] = funcalls
if self.fit_info["exit_mode"] == 1:
warnings.warn(
"The fit may be unsuccessful; "
"Maximum number of function evaluations reached.",
AstropyUserWarning,
)
elif self.fit_info["exit_mode"] == 2:
warnings.warn(
"The fit may be unsuccessful; Maximum number of iterations reached.",
AstropyUserWarning,
)
return fitparams, self.fit_info