# Licensed under a 3-clause BSD style license - see LICENSE.rst
import collections
import json
import socket
import urllib.error
import urllib.parse
import urllib.request
from warnings import warn
import erfa
import numpy as np
from astropy import constants as consts
from astropy import units as u
from astropy.units.quantity import QuantityInfoBase
from astropy.utils import data
from astropy.utils.decorators import format_doc
from astropy.utils.exceptions import AstropyUserWarning
from .angles import Angle, Latitude, Longitude
from .errors import UnknownSiteException
from .matrix_utilities import matrix_transpose
from .representation import (
BaseRepresentation,
CartesianDifferential,
CartesianRepresentation,
)
__all__ = [
"EarthLocation",
"BaseGeodeticRepresentation",
"WGS84GeodeticRepresentation",
"WGS72GeodeticRepresentation",
"GRS80GeodeticRepresentation",
]
GeodeticLocation = collections.namedtuple("GeodeticLocation", ["lon", "lat", "height"])
ELLIPSOIDS = {}
"""Available ellipsoids (defined in erfam.h, with numbers exposed in erfa)."""
# Note: they get filled by the creation of the geodetic classes.
OMEGA_EARTH = (1.002_737_811_911_354_48 * u.cycle / u.day).to(
1 / u.s, u.dimensionless_angles()
)
"""
Rotational velocity of Earth, following SOFA's pvtob.
In UT1 seconds, this would be 2 pi / (24 * 3600), but we need the value
in SI seconds, so multiply by the ratio of stellar to solar day.
See Explanatory Supplement to the Astronomical Almanac, ed. P. Kenneth
Seidelmann (1992), University Science Books. The constant is the
conventional, exact one (IERS conventions 2003); see
http://hpiers.obspm.fr/eop-pc/index.php?index=constants.
"""
def _check_ellipsoid(ellipsoid=None, default="WGS84"):
if ellipsoid is None:
ellipsoid = default
if ellipsoid not in ELLIPSOIDS:
raise ValueError(f"Ellipsoid {ellipsoid} not among known ones ({ELLIPSOIDS})")
return ellipsoid
def _get_json_result(url, err_str, use_google):
# need to do this here to prevent a series of complicated circular imports
from .name_resolve import NameResolveError
try:
# Retrieve JSON response from Google maps API
resp = urllib.request.urlopen(url, timeout=data.conf.remote_timeout)
resp_data = json.loads(resp.read().decode("utf8"))
except urllib.error.URLError as e:
# This catches a timeout error, see:
# http://stackoverflow.com/questions/2712524/handling-urllib2s-timeout-python
if isinstance(e.reason, socket.timeout):
raise NameResolveError(err_str.format(msg="connection timed out")) from e
else:
raise NameResolveError(err_str.format(msg=e.reason)) from e
except socket.timeout:
# There are some cases where urllib2 does not catch socket.timeout
# especially while receiving response data on an already previously
# working request
raise NameResolveError(err_str.format(msg="connection timed out"))
if use_google:
results = resp_data.get("results", [])
if resp_data.get("status", None) != "OK":
raise NameResolveError(
err_str.format(msg="unknown failure with Google API")
)
else: # OpenStreetMap returns a list
results = resp_data
if not results:
raise NameResolveError(err_str.format(msg="no results returned"))
return results
class EarthLocationInfo(QuantityInfoBase):
"""
Container for meta information like name, description, format. This is
required when the object is used as a mixin column within a table, but can
be used as a general way to store meta information.
"""
_represent_as_dict_attrs = ("x", "y", "z", "ellipsoid")
def _construct_from_dict(self, map):
# Need to pop ellipsoid off and update post-instantiation. This is
# on the to-fix list in #4261.
ellipsoid = map.pop("ellipsoid")
out = self._parent_cls(**map)
out.ellipsoid = ellipsoid
return out
def new_like(self, cols, length, metadata_conflicts="warn", name=None):
"""
Return a new EarthLocation instance which is consistent with the
input ``cols`` and has ``length`` rows.
This is intended for creating an empty column object whose elements can
be set in-place for table operations like join or vstack.
Parameters
----------
cols : list
List of input columns
length : int
Length of the output column object
metadata_conflicts : str ('warn'|'error'|'silent')
How to handle metadata conflicts
name : str
Output column name
Returns
-------
col : EarthLocation (or subclass)
Empty instance of this class consistent with ``cols``
"""
# Very similar to QuantityInfo.new_like, but the creation of the
# map is different enough that this needs its own rouinte.
# Get merged info attributes shape, dtype, format, description.
attrs = self.merge_cols_attributes(
cols, metadata_conflicts, name, ("meta", "format", "description")
)
# The above raises an error if the dtypes do not match, but returns
# just the string representation, which is not useful, so remove.
attrs.pop("dtype")
# Make empty EarthLocation using the dtype and unit of the last column.
# Use zeros so we do not get problems for possible conversion to
# geodetic coordinates.
shape = (length,) + attrs.pop("shape")
data = u.Quantity(
np.zeros(shape=shape, dtype=cols[0].dtype), unit=cols[0].unit, copy=False
)
# Get arguments needed to reconstruct class
map = {
key: (data[key] if key in "xyz" else getattr(cols[-1], key))
for key in self._represent_as_dict_attrs
}
out = self._construct_from_dict(map)
# Set remaining info attributes
for attr, value in attrs.items():
setattr(out.info, attr, value)
return out
[docs]class EarthLocation(u.Quantity):
"""
Location on the Earth.
Initialization is first attempted assuming geocentric (x, y, z) coordinates
are given; if that fails, another attempt is made assuming geodetic
coordinates (longitude, latitude, height above a reference ellipsoid).
When using the geodetic forms, Longitudes are measured increasing to the
east, so west longitudes are negative. Internally, the coordinates are
stored as geocentric.
To ensure a specific type of coordinates is used, use the corresponding
class methods (`from_geocentric` and `from_geodetic`) or initialize the
arguments with names (``x``, ``y``, ``z`` for geocentric; ``lon``, ``lat``,
``height`` for geodetic). See the class methods for details.
Notes
-----
This class fits into the coordinates transformation framework in that it
encodes a position on the `~astropy.coordinates.ITRS` frame. To get a
proper `~astropy.coordinates.ITRS` object from this object, use the ``itrs``
property.
"""
_ellipsoid = "WGS84"
_location_dtype = np.dtype({"names": ["x", "y", "z"], "formats": [np.float64] * 3})
_array_dtype = np.dtype((np.float64, (3,)))
info = EarthLocationInfo()
def __new__(cls, *args, **kwargs):
# TODO: needs copy argument and better dealing with inputs.
if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], EarthLocation):
return args[0].copy()
try:
self = cls.from_geocentric(*args, **kwargs)
except (u.UnitsError, TypeError) as exc_geocentric:
try:
self = cls.from_geodetic(*args, **kwargs)
except Exception as exc_geodetic:
raise TypeError(
"Coordinates could not be parsed as either "
"geocentric or geodetic, with respective "
f'exceptions "{exc_geocentric}" and "{exc_geodetic}"'
)
return self
[docs] @classmethod
def from_geocentric(cls, x, y, z, unit=None):
"""
Location on Earth, initialized from geocentric coordinates.
Parameters
----------
x, y, z : `~astropy.units.Quantity` or array-like
Cartesian coordinates. If not quantities, ``unit`` should be given.
unit : unit-like or None
Physical unit of the coordinate values. If ``x``, ``y``, and/or
``z`` are quantities, they will be converted to this unit.
Raises
------
astropy.units.UnitsError
If the units on ``x``, ``y``, and ``z`` do not match or an invalid
unit is given.
ValueError
If the shapes of ``x``, ``y``, and ``z`` do not match.
TypeError
If ``x`` is not a `~astropy.units.Quantity` and no unit is given.
"""
if unit is None:
try:
unit = x.unit
except AttributeError:
raise TypeError(
"Geocentric coordinates should be Quantities "
"unless an explicit unit is given."
) from None
else:
unit = u.Unit(unit)
if unit.physical_type != "length":
raise u.UnitsError("Geocentric coordinates should be in units of length.")
try:
x = u.Quantity(x, unit, copy=False)
y = u.Quantity(y, unit, copy=False)
z = u.Quantity(z, unit, copy=False)
except u.UnitsError:
raise u.UnitsError("Geocentric coordinate units should all be consistent.")
x, y, z = np.broadcast_arrays(x, y, z)
struc = np.empty(x.shape, cls._location_dtype)
struc["x"], struc["y"], struc["z"] = x, y, z
return super().__new__(cls, struc, unit, copy=False)
[docs] @classmethod
def from_geodetic(cls, lon, lat, height=0.0, ellipsoid=None):
"""
Location on Earth, initialized from geodetic coordinates.
Parameters
----------
lon : `~astropy.coordinates.Longitude` or float
Earth East longitude. Can be anything that initialises an
`~astropy.coordinates.Angle` object (if float, in degrees).
lat : `~astropy.coordinates.Latitude` or float
Earth latitude. Can be anything that initialises an
`~astropy.coordinates.Latitude` object (if float, in degrees).
height : `~astropy.units.Quantity` ['length'] or float, optional
Height above reference ellipsoid (if float, in meters; default: 0).
ellipsoid : str, optional
Name of the reference ellipsoid to use (default: 'WGS84').
Available ellipsoids are: 'WGS84', 'GRS80', 'WGS72'.
Raises
------
astropy.units.UnitsError
If the units on ``lon`` and ``lat`` are inconsistent with angular
ones, or that on ``height`` with a length.
ValueError
If ``lon``, ``lat``, and ``height`` do not have the same shape, or
if ``ellipsoid`` is not recognized as among the ones implemented.
Notes
-----
For the conversion to geocentric coordinates, the ERFA routine
``gd2gc`` is used. See https://github.com/liberfa/erfa
"""
ellipsoid = _check_ellipsoid(ellipsoid, default=cls._ellipsoid)
# As wrapping fails on readonly input, we do so manually
lon = Angle(lon, u.degree, copy=False).wrap_at(180 * u.degree)
lat = Latitude(lat, u.degree, copy=False)
# don't convert to m by default, so we can use the height unit below.
if not isinstance(height, u.Quantity):
height = u.Quantity(height, u.m, copy=False)
# get geocentric coordinates.
geodetic = ELLIPSOIDS[ellipsoid](lon, lat, height, copy=False)
xyz = geodetic.to_cartesian().get_xyz(xyz_axis=-1) << height.unit
self = xyz.view(cls._location_dtype, cls).reshape(geodetic.shape)
self._ellipsoid = ellipsoid
return self
[docs] @classmethod
def of_site(cls, site_name):
"""
Return an object of this class for a known observatory/site by name.
This is intended as a quick convenience function to get basic site
information, not a fully-featured exhaustive registry of observatories
and all their properties.
Additional information about the site is stored in the ``.info.meta``
dictionary of sites obtained using this method (see the examples below).
.. note::
When this function is called, it will attempt to download site
information from the astropy data server. If you would like a site
to be added, issue a pull request to the
`astropy-data repository <https://github.com/astropy/astropy-data>`_ .
If a site cannot be found in the registry (i.e., an internet
connection is not available), it will fall back on a built-in list,
In the future, this bundled list might include a version-controlled
list of canonical observatories extracted from the online version,
but it currently only contains the Greenwich Royal Observatory as an
example case.
Parameters
----------
site_name : str
Name of the observatory (case-insensitive).
Returns
-------
site : `~astropy.coordinates.EarthLocation` (or subclass) instance
The location of the observatory. The returned class will be the same
as this class.
Examples
--------
>>> from astropy.coordinates import EarthLocation
>>> keck = EarthLocation.of_site('Keck Observatory') # doctest: +REMOTE_DATA
>>> keck.geodetic # doctest: +REMOTE_DATA +FLOAT_CMP
GeodeticLocation(lon=<Longitude -155.47833333 deg>, lat=<Latitude 19.82833333 deg>, height=<Quantity 4160. m>)
>>> keck.info # doctest: +REMOTE_DATA
name = W. M. Keck Observatory
dtype = (float64, float64, float64)
unit = m
class = EarthLocation
n_bad = 0
>>> keck.info.meta # doctest: +REMOTE_DATA
{'source': 'IRAF Observatory Database', 'timezone': 'US/Hawaii'}
See Also
--------
get_site_names : the list of sites that this function can access
""" # noqa: E501
registry = cls._get_site_registry()
try:
el = registry[site_name]
except UnknownSiteException as e:
raise UnknownSiteException(
e.site, "EarthLocation.get_site_names", close_names=e.close_names
) from e
if cls is el.__class__:
return el
else:
newel = cls.from_geodetic(*el.to_geodetic())
newel.info.name = el.info.name
return newel
[docs] @classmethod
def of_address(cls, address, get_height=False, google_api_key=None):
"""
Return an object of this class for a given address by querying either
the OpenStreetMap Nominatim tool [1]_ (default) or the Google geocoding
API [2]_, which requires a specified API key.
This is intended as a quick convenience function to get easy access to
locations. If you need to specify a precise location, you should use the
initializer directly and pass in a longitude, latitude, and elevation.
In the background, this just issues a web query to either of
the APIs noted above. This is not meant to be abused! Both
OpenStreetMap and Google use IP-based query limiting and will ban your
IP if you send more than a few thousand queries per hour [2]_.
.. warning::
If the query returns more than one location (e.g., searching on
``address='springfield'``), this function will use the **first**
returned location.
Parameters
----------
address : str
The address to get the location for. As per the Google maps API,
this can be a fully specified street address (e.g., 123 Main St.,
New York, NY) or a city name (e.g., Danbury, CT), or etc.
get_height : bool, optional
This only works when using the Google API! See the ``google_api_key``
block below. Use the retrieved location to perform a second query to
the Google maps elevation API to retrieve the height of the input
address [3]_.
google_api_key : str, optional
A Google API key with the Geocoding API and (optionally) the
elevation API enabled. See [4]_ for more information.
Returns
-------
location : `~astropy.coordinates.EarthLocation` (or subclass) instance
The location of the input address.
Will be type(this class)
References
----------
.. [1] https://nominatim.openstreetmap.org/
.. [2] https://developers.google.com/maps/documentation/geocoding/start
.. [3] https://developers.google.com/maps/documentation/elevation/start
.. [4] https://developers.google.com/maps/documentation/geocoding/get-api-key
"""
use_google = google_api_key is not None
# Fail fast if invalid options are passed:
if not use_google and get_height:
raise ValueError(
"Currently, `get_height` only works when using the Google geocoding"
" API, which requires passing a Google API key with `google_api_key`."
" See:"
" https://developers.google.com/maps/documentation/geocoding/get-api-key"
" for information on obtaining an API key."
)
if use_google: # Google
pars = urllib.parse.urlencode({"address": address, "key": google_api_key})
geo_url = f"https://maps.googleapis.com/maps/api/geocode/json?{pars}"
else: # OpenStreetMap
pars = urllib.parse.urlencode({"q": address, "format": "json"})
geo_url = f"https://nominatim.openstreetmap.org/search?{pars}"
# get longitude and latitude location
err_str = f"Unable to retrieve coordinates for address '{address}'; {{msg}}"
geo_result = _get_json_result(geo_url, err_str=err_str, use_google=use_google)
if use_google:
loc = geo_result[0]["geometry"]["location"]
lat = loc["lat"]
lon = loc["lng"]
else:
loc = geo_result[0]
lat = float(loc["lat"]) # strings are returned by OpenStreetMap
lon = float(loc["lon"])
if get_height:
pars = {"locations": f"{lat:.8f},{lon:.8f}", "key": google_api_key}
pars = urllib.parse.urlencode(pars)
ele_url = f"https://maps.googleapis.com/maps/api/elevation/json?{pars}"
err_str = f"Unable to retrieve elevation for address '{address}'; {{msg}}"
ele_result = _get_json_result(
ele_url, err_str=err_str, use_google=use_google
)
height = ele_result[0]["elevation"] * u.meter
else:
height = 0.0
return cls.from_geodetic(lon=lon * u.deg, lat=lat * u.deg, height=height)
[docs] @classmethod
def get_site_names(cls):
"""
Get list of names of observatories for use with
`~astropy.coordinates.EarthLocation.of_site`.
.. note::
When this function is called, it will first attempt to
download site information from the astropy data server. If it
cannot (i.e., an internet connection is not available), it will fall
back on the list included with astropy (which is a limited and dated
set of sites). If you think a site should be added, issue a pull
request to the
`astropy-data repository <https://github.com/astropy/astropy-data>`_ .
Returns
-------
names : list of str
List of valid observatory names
See Also
--------
of_site : Gets the actual location object for one of the sites names
this returns.
"""
return cls._get_site_registry().names
@classmethod
def _get_site_registry(cls, force_download=False, force_builtin=False):
"""
Gets the site registry. The first time this either downloads or loads
from the data file packaged with astropy. Subsequent calls will use the
cached version unless explicitly overridden.
Parameters
----------
force_download : bool or str
If not False, force replacement of the cached registry with a
downloaded version. If a str, that will be used as the URL to
download from (if just True, the default URL will be used).
force_builtin : bool
If True, load from the data file bundled with astropy and set the
cache to that.
Returns
-------
reg : astropy.coordinates.sites.SiteRegistry
"""
# need to do this here at the bottom to avoid circular dependencies
from .sites import get_builtin_sites, get_downloaded_sites
if force_builtin and force_download:
raise ValueError("Cannot have both force_builtin and force_download True")
if force_builtin:
reg = cls._site_registry = get_builtin_sites()
else:
reg = getattr(cls, "_site_registry", None)
if force_download or not reg:
try:
if isinstance(force_download, str):
reg = get_downloaded_sites(force_download)
else:
reg = get_downloaded_sites()
except OSError:
if force_download:
raise
msg = (
"Could not access the online site list. Falling "
"back on the built-in version, which is rather "
"limited. If you want to retry the download, do "
"{0}._get_site_registry(force_download=True)"
)
warn(AstropyUserWarning(msg.format(cls.__name__)))
reg = get_builtin_sites()
cls._site_registry = reg
return reg
@property
def ellipsoid(self):
"""The default ellipsoid used to convert to geodetic coordinates."""
return self._ellipsoid
@ellipsoid.setter
def ellipsoid(self, ellipsoid):
self._ellipsoid = _check_ellipsoid(ellipsoid)
@property
def geodetic(self):
"""Convert to geodetic coordinates for the default ellipsoid."""
return self.to_geodetic()
[docs] def to_geodetic(self, ellipsoid=None):
"""Convert to geodetic coordinates.
Parameters
----------
ellipsoid : str, optional
Reference ellipsoid to use. Default is the one the coordinates
were initialized with. Available are: 'WGS84', 'GRS80', 'WGS72'
Returns
-------
lon, lat, height : `~astropy.units.Quantity`
The tuple is a ``GeodeticLocation`` namedtuple and is comprised of
instances of `~astropy.coordinates.Longitude`,
`~astropy.coordinates.Latitude`, and `~astropy.units.Quantity`.
Raises
------
ValueError
if ``ellipsoid`` is not recognized as among the ones implemented.
Notes
-----
For the conversion to geodetic coordinates, the ERFA routine
``gc2gd`` is used. See https://github.com/liberfa/erfa
"""
ellipsoid = _check_ellipsoid(ellipsoid, default=self.ellipsoid)
xyz = self.view(self._array_dtype, u.Quantity)
llh = CartesianRepresentation(xyz, xyz_axis=-1, copy=False).represent_as(
ELLIPSOIDS[ellipsoid]
)
return GeodeticLocation(
Longitude(llh.lon, u.deg, wrap_angle=180 * u.deg, copy=False),
llh.lat << u.deg,
llh.height << self.unit,
)
@property
def lon(self):
"""Longitude of the location, for the default ellipsoid."""
return self.geodetic[0]
@property
def lat(self):
"""Latitude of the location, for the default ellipsoid."""
return self.geodetic[1]
@property
def height(self):
"""Height of the location, for the default ellipsoid."""
return self.geodetic[2]
# mostly for symmetry with geodetic and to_geodetic.
@property
def geocentric(self):
"""Convert to a tuple with X, Y, and Z as quantities"""
return self.to_geocentric()
[docs] def to_geocentric(self):
"""Convert to a tuple with X, Y, and Z as quantities"""
return (self.x, self.y, self.z)
[docs] def get_itrs(self, obstime=None):
"""
Generates an `~astropy.coordinates.ITRS` object with the location of
this object at the requested ``obstime``.
Parameters
----------
obstime : `~astropy.time.Time` or None
The ``obstime`` to apply to the new `~astropy.coordinates.ITRS`, or
if None, the default ``obstime`` will be used.
Returns
-------
itrs : `~astropy.coordinates.ITRS`
The new object in the ITRS frame
"""
# Broadcast for a single position at multiple times, but don't attempt
# to be more general here.
if obstime and self.size == 1 and obstime.shape:
self = np.broadcast_to(self, obstime.shape, subok=True)
# do this here to prevent a series of complicated circular imports
from .builtin_frames import ITRS
return ITRS(x=self.x, y=self.y, z=self.z, obstime=obstime)
itrs = property(
get_itrs,
doc="""An `~astropy.coordinates.ITRS` object
for the location of this object at the
default ``obstime``.""",
)
[docs] def get_gcrs(self, obstime):
"""GCRS position with velocity at ``obstime`` as a GCRS coordinate.
Parameters
----------
obstime : `~astropy.time.Time`
The ``obstime`` to calculate the GCRS position/velocity at.
Returns
-------
gcrs : `~astropy.coordinates.GCRS` instance
With velocity included.
"""
# do this here to prevent a series of complicated circular imports
from .builtin_frames import GCRS
loc, vel = self.get_gcrs_posvel(obstime)
loc.differentials["s"] = CartesianDifferential.from_cartesian(vel)
return GCRS(loc, obstime=obstime)
def _get_gcrs_posvel(self, obstime, ref_to_itrs, gcrs_to_ref):
"""Calculate GCRS position and velocity given transformation matrices.
The reference frame z axis must point to the Celestial Intermediate Pole
(as is the case for CIRS and TETE).
This private method is used in intermediate_rotation_transforms,
where some of the matrices are already available for the coordinate
transformation.
The method is faster by an order of magnitude than just adding a zero
velocity to ITRS and transforming to GCRS, because it avoids calculating
the velocity via finite differencing of the results of the transformation
at three separate times.
"""
# The simplest route is to transform to the reference frame where the
# z axis is properly aligned with the Earth's rotation axis (CIRS or
# TETE), then calculate the velocity, and then transform this
# reference position and velocity to GCRS. For speed, though, we
# transform the coordinates to GCRS in one step, and calculate the
# velocities by rotating around the earth's axis transformed to GCRS.
ref_to_gcrs = matrix_transpose(gcrs_to_ref)
itrs_to_gcrs = ref_to_gcrs @ matrix_transpose(ref_to_itrs)
# Earth's rotation vector in the ref frame is rot_vec_ref = (0,0,OMEGA_EARTH),
# so in GCRS it is rot_vec_gcrs[..., 2] @ OMEGA_EARTH.
rot_vec_gcrs = CartesianRepresentation(
ref_to_gcrs[..., 2] * OMEGA_EARTH, xyz_axis=-1, copy=False
)
# Get the position in the GCRS frame.
# Since we just need the cartesian representation of ITRS, avoid get_itrs().
itrs_cart = CartesianRepresentation(self.x, self.y, self.z, copy=False)
pos = itrs_cart.transform(itrs_to_gcrs)
vel = rot_vec_gcrs.cross(pos)
return pos, vel
[docs] def get_gcrs_posvel(self, obstime):
"""
Calculate the GCRS position and velocity of this object at the
requested ``obstime``.
Parameters
----------
obstime : `~astropy.time.Time`
The ``obstime`` to calculate the GCRS position/velocity at.
Returns
-------
obsgeoloc : `~astropy.coordinates.CartesianRepresentation`
The GCRS position of the object
obsgeovel : `~astropy.coordinates.CartesianRepresentation`
The GCRS velocity of the object
"""
# Local import to prevent circular imports.
from .builtin_frames.intermediate_rotation_transforms import (
cirs_to_itrs_mat,
gcrs_to_cirs_mat,
)
# Get gcrs_posvel by transforming via CIRS (slightly faster than TETE).
return self._get_gcrs_posvel(
obstime, cirs_to_itrs_mat(obstime), gcrs_to_cirs_mat(obstime)
)
[docs] def gravitational_redshift(
self, obstime, bodies=["sun", "jupiter", "moon"], masses={}
):
"""Return the gravitational redshift at this EarthLocation.
Calculates the gravitational redshift, of order 3 m/s, due to the
requested solar system bodies.
Parameters
----------
obstime : `~astropy.time.Time`
The ``obstime`` to calculate the redshift at.
bodies : iterable, optional
The bodies (other than the Earth) to include in the redshift
calculation. List elements should be any body name
`get_body_barycentric` accepts. Defaults to Jupiter, the Sun, and
the Moon. Earth is always included (because the class represents
an *Earth* location).
masses : dict[str, `~astropy.units.Quantity`], optional
The mass or gravitational parameters (G * mass) to assume for the
bodies requested in ``bodies``. Can be used to override the
defaults for the Sun, Jupiter, the Moon, and the Earth, or to
pass in masses for other bodies.
Returns
-------
redshift : `~astropy.units.Quantity`
Gravitational redshift in velocity units at given obstime.
"""
# needs to be here to avoid circular imports
from .solar_system import get_body_barycentric
bodies = list(bodies)
# Ensure earth is included and last in the list.
if "earth" in bodies:
bodies.remove("earth")
bodies.append("earth")
_masses = {
"sun": consts.GM_sun,
"jupiter": consts.GM_jup,
"moon": consts.G * 7.34767309e22 * u.kg,
"earth": consts.GM_earth,
}
_masses.update(masses)
GMs = []
M_GM_equivalency = (u.kg, u.Unit(consts.G * u.kg))
for body in bodies:
try:
GMs.append(_masses[body].to(u.m**3 / u.s**2, [M_GM_equivalency]))
except KeyError as err:
raise KeyError(f'body "{body}" does not have a mass.') from err
except u.UnitsError as exc:
exc.args += (
(
'"masses" argument values must be masses or '
"gravitational parameters."
),
)
raise
positions = [get_body_barycentric(name, obstime) for name in bodies]
# Calculate distances to objects other than earth.
distances = [(pos - positions[-1]).norm() for pos in positions[:-1]]
# Append distance from Earth's center for Earth's contribution.
distances.append(CartesianRepresentation(self.geocentric).norm())
# Get redshifts due to all objects.
redshifts = [
-GM / consts.c / distance for (GM, distance) in zip(GMs, distances)
]
# Reverse order of summing, to go from small to big, and to get
# "earth" first, which gives m/s as unit.
return sum(redshifts[::-1])
@property
def x(self):
"""The X component of the geocentric coordinates."""
return self["x"]
@property
def y(self):
"""The Y component of the geocentric coordinates."""
return self["y"]
@property
def z(self):
"""The Z component of the geocentric coordinates."""
return self["z"]
def __getitem__(self, item):
result = super().__getitem__(item)
if result.dtype is self.dtype:
return result.view(self.__class__)
else:
return result.view(u.Quantity)
def __array_finalize__(self, obj):
super().__array_finalize__(obj)
if hasattr(obj, "_ellipsoid"):
self._ellipsoid = obj._ellipsoid
def __len__(self):
if self.shape == ():
raise IndexError("0-d EarthLocation arrays cannot be indexed")
else:
return super().__len__()
def _to_value(self, unit, equivalencies=[]):
"""Helper method for to and to_value."""
# Conversion to another unit in both ``to`` and ``to_value`` goes
# via this routine. To make the regular quantity routines work, we
# temporarily turn the structured array into a regular one.
array_view = self.view(self._array_dtype, np.ndarray)
if equivalencies == []:
equivalencies = self._equivalencies
new_array = self.unit.to(unit, array_view, equivalencies=equivalencies)
return new_array.view(self.dtype).reshape(self.shape)
geodetic_base_doc = """{__doc__}
Parameters
----------
lon, lat : angle-like
The longitude and latitude of the point(s), in angular units. The
latitude should be between -90 and 90 degrees, and the longitude will
be wrapped to an angle between 0 and 360 degrees. These can also be
instances of `~astropy.coordinates.Angle` and either
`~astropy.coordinates.Longitude` not `~astropy.coordinates.Latitude`,
depending on the parameter.
height : `~astropy.units.Quantity` ['length']
The height to the point(s).
copy : bool, optional
If `True` (default), arrays will be copied. If `False`, arrays will
be references, though possibly broadcast to ensure matching shapes.
"""
[docs]@format_doc(geodetic_base_doc)
class BaseGeodeticRepresentation(BaseRepresentation):
"""Base geodetic representation."""
attr_classes = {"lon": Longitude, "lat": Latitude, "height": u.Quantity}
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
if "_ellipsoid" in cls.__dict__:
ELLIPSOIDS[cls._ellipsoid] = cls
def __init__(self, lon, lat=None, height=None, copy=True):
if height is None and not isinstance(lon, self.__class__):
height = 0 << u.m
super().__init__(lon, lat, height, copy=copy)
if not self.height.unit.is_equivalent(u.m):
raise u.UnitTypeError(
f"{self.__class__.__name__} requires height with units of length."
)
[docs] def to_cartesian(self):
"""
Converts WGS84 geodetic coordinates to 3D rectangular (geocentric)
cartesian coordinates.
"""
xyz = erfa.gd2gc(
getattr(erfa, self._ellipsoid), self.lon, self.lat, self.height
)
return CartesianRepresentation(xyz, xyz_axis=-1, copy=False)
[docs] @classmethod
def from_cartesian(cls, cart):
"""
Converts 3D rectangular cartesian coordinates (assumed geocentric) to
WGS84 geodetic coordinates.
"""
lon, lat, height = erfa.gc2gd(
getattr(erfa, cls._ellipsoid), cart.get_xyz(xyz_axis=-1)
)
return cls(lon, lat, height, copy=False)
[docs]@format_doc(geodetic_base_doc)
class WGS84GeodeticRepresentation(BaseGeodeticRepresentation):
"""Representation of points in WGS84 3D geodetic coordinates."""
_ellipsoid = "WGS84"
[docs]@format_doc(geodetic_base_doc)
class WGS72GeodeticRepresentation(BaseGeodeticRepresentation):
"""Representation of points in WGS72 3D geodetic coordinates."""
_ellipsoid = "WGS72"
[docs]@format_doc(geodetic_base_doc)
class GRS80GeodeticRepresentation(BaseGeodeticRepresentation):
"""Representation of points in GRS80 3D geodetic coordinates."""
_ellipsoid = "GRS80"