Density of states

Example:

calc = ...
dos = DOS(calc, width=0.2)
d = dos.get_dos()
e = dos.get_energies()

You can plot the result like this:

import matplotlib.pyplot as plt
plt.plot(e, d)
plt.xlabel('energy [eV]')
plt.ylabel('DOS')
plt.show()
../../_images/dos.png

Calculations involving moments of a DOS distribution may be facilitated by the use of get_distribution_moment() method, as in the following example:

from ase.dft import get_distribution_moment
volume = get_distribution_moment(e,d)
center, width = get_distribution_moment(e,d,(1,2))

More details

class ase.dft.dos.DOS(calc, width=0.1, window=None, npts=401, comm=<ase.parallel.MPI object>)[source]

Electronic Density Of States object.

calc: calculator object

Any ASE compliant calculator object.

width: float

Width of guassian smearing. Use width=0.0 for linear tetrahedron interpolation.

window: tuple of two float

Use window=(emin, emax). If not specified, a window big enough to hold all the eigenvalues will be used.

npts: int

Number of points.

comm: communicator object

MPI communicator for lti_dos

get_dos(spin=None)[source]

Get array of DOS values.

The spin argument can be 0 or 1 (spin up or down) - if not specified, the total DOS is returned.

get_energies()[source]

Return the array of energies used to sample the DOS.

The energies are reported relative to the Fermi level.

ase.dft.dos.linear_tetrahedron_integration(cell, eigs, energies, weights=None, comm=<ase.parallel.MPI object>)[source]

DOS from linear tetrahedron interpolation.

cell: 3x3 ndarray-like

Unit cell.

eigs: (n1, n2, n3, nbands)-shaped ndarray

Eigenvalues on a Monkhorst-Pack grid (not reduced).

energies: 1-d array-like

Energies where the DOS is calculated (must be a uniform grid).

weights: ndarray of shape (n1, n2, n3, nbands) or (n1, n2, n3, nbands, nw)

Weights. Defaults to a (n1, n2, n3, nbands)-shaped ndarray filled with ones. Can also have an extra dimednsion if there are nw weights.

comm: communicator object

MPI communicator for lti_dos

Returns

DOS as an ndarray of same length as energies or as an ndarray of shape (nw, len(energies)).

See:

Extensions of the tetrahedron method for evaluating spectral properties of solids, A. H. MacDonald, S. H. Vosko and P. T. Coleridge, 1979 J. Phys. C: Solid State Phys. 12 2991, https://doi.org/10.1088/0022-3719/12/15/008

ase.dft.get_distribution_moment(x, y, order=0)[source]

Return the moment of nth order of distribution.

1st and 2nd order moments of a band correspond to the band’s center and width respectively.

For integration, the trapezoid rule is used.