Source code for ase.thermochemistry

"""Modules for calculating thermochemical information from computational
outputs."""

import os
import sys
import numpy as np

from ase import units


class ThermoChem:
    """Base class containing common methods used in thermochemistry
    calculations."""

    def get_ZPE_correction(self):
        """Returns the zero-point vibrational energy correction in eV."""
        zpe = 0.
        for energy in self.vib_energies:
            zpe += 0.5 * energy
        return zpe

    def _vibrational_energy_contribution(self, temperature):
        """Calculates the change in internal energy due to vibrations from
        0K to the specified temperature for a set of vibrations given in
        eV and a temperature given in Kelvin. Returns the energy change
        in eV."""
        kT = units.kB * temperature
        dU = 0.
        for energy in self.vib_energies:
            dU += energy / (np.exp(energy / kT) - 1.)
        return dU

    def _vibrational_entropy_contribution(self, temperature):
        """Calculates the entropy due to vibrations for a set of vibrations
        given in eV and a temperature given in Kelvin.  Returns the entropy
        in eV/K."""
        kT = units.kB * temperature
        S_v = 0.
        for energy in self.vib_energies:
            x = energy / kT
            S_v += x / (np.exp(x) - 1.) - np.log(1. - np.exp(-x))
        S_v *= units.kB
        return S_v

    def _vprint(self, text):
        """Print output if verbose flag True."""
        if self.verbose:
            sys.stdout.write(text + os.linesep)


[docs]class HarmonicThermo(ThermoChem): """Class for calculating thermodynamic properties in the approximation that all degrees of freedom are treated harmonically. Often used for adsorbates. Inputs: vib_energies : list a list of the harmonic energies of the adsorbate (e.g., from ase.vibrations.Vibrations.get_energies). The number of energies should match the number of degrees of freedom of the adsorbate; i.e., 3*n, where n is the number of atoms. Note that this class does not check that the user has supplied the correct number of energies. Units of energies are eV. potentialenergy : float the potential energy in eV (e.g., from atoms.get_potential_energy) (if potentialenergy is unspecified, then the methods of this class can be interpreted as the energy corrections) """ def __init__(self, vib_energies, potentialenergy=0.): self.vib_energies = vib_energies # Check for imaginary frequencies. if sum(np.iscomplex(self.vib_energies)): raise ValueError('Imaginary vibrational energies are present.') else: self.vib_energies = np.real(self.vib_energies) # clear +0.j self.potentialenergy = potentialenergy
[docs] def get_internal_energy(self, temperature, verbose=True): """Returns the internal energy, in eV, in the harmonic approximation at a specified temperature (K).""" self.verbose = verbose write = self._vprint fmt = '%-15s%13.3f eV' write('Internal energy components at T = %.2f K:' % temperature) write('=' * 31) U = 0. write(fmt % ('E_pot', self.potentialenergy)) U += self.potentialenergy zpe = self.get_ZPE_correction() write(fmt % ('E_ZPE', zpe)) U += zpe dU_v = self._vibrational_energy_contribution(temperature) write(fmt % ('Cv_harm (0->T)', dU_v)) U += dU_v write('-' * 31) write(fmt % ('U', U)) write('=' * 31) return U
[docs] def get_entropy(self, temperature, verbose=True): """Returns the entropy, in eV/K, in the harmonic approximation at a specified temperature (K).""" self.verbose = verbose write = self._vprint fmt = '%-15s%13.7f eV/K%13.3f eV' write('Entropy components at T = %.2f K:' % temperature) write('=' * 49) write('%15s%13s %13s' % ('', 'S', 'T*S')) S = 0. S_v = self._vibrational_entropy_contribution(temperature) write(fmt % ('S_harm', S_v, S_v * temperature)) S += S_v write('-' * 49) write(fmt % ('S', S, S * temperature)) write('=' * 49) return S
[docs] def get_helmholtz_energy(self, temperature, verbose=True): """Returns the Helmholtz free energy, in eV, in the harmonic approximation at a specified temperature (K).""" self.verbose = True write = self._vprint U = self.get_internal_energy(temperature, verbose=verbose) write('') S = self.get_entropy(temperature, verbose=verbose) F = U - temperature * S write('') write('Free energy components at T = %.2f K:' % temperature) write('=' * 23) fmt = '%5s%15.3f eV' write(fmt % ('U', U)) write(fmt % ('-T*S', -temperature * S)) write('-' * 23) write(fmt % ('F', F)) write('=' * 23) return F
[docs]class HinderedThermo(ThermoChem): """Class for calculating thermodynamic properties in the hindered translator and hindered rotor model where all but three degrees of freedom are treated as harmonic vibrations, two are treated as hindered translations, and one is treated as a hindered rotation. Inputs: vib_energies : list a list of all the vibrational energies of the adsorbate (e.g., from ase.vibrations.Vibrations.get_energies). The number of energies should match the number of degrees of freedom of the adsorbate; i.e., 3*n, where n is the number of atoms. Note that this class does not check that the user has supplied the correct number of energies. Units of energies are eV. trans_barrier_energy : float the translational energy barrier in eV. This is the barrier for an adsorbate to diffuse on the surface. rot_barrier_energy : float the rotational energy barrier in eV. This is the barrier for an adsorbate to rotate about an axis perpendicular to the surface. sitedensity : float density of surface sites in cm^-2 rotationalminima : integer the number of equivalent minima for an adsorbate's full rotation. For example, 6 for an adsorbate on an fcc(111) top site potentialenergy : float the potential energy in eV (e.g., from atoms.get_potential_energy) (if potentialenergy is unspecified, then the methods of this class can be interpreted as the energy corrections) mass : float the mass of the adsorbate in amu (if mass is unspecified, then it will be calculated from the atoms class) inertia : float the reduced moment of inertia of the adsorbate in amu*Ang^-2 (if inertia is unspecified, then it will be calculated from the atoms class) atoms : an ASE atoms object used to calculate rotational moments of inertia and molecular mass symmetrynumber : integer symmetry number of the adsorbate. This is the number of symmetric arms of the adsorbate and depends upon how it is bound to the surface. For example, propane bound through its end carbon has a symmetry number of 1 but propane bound through its middle carbon has a symmetry number of 2. (if symmetrynumber is unspecified, then the default is 1) """ def __init__(self, vib_energies, trans_barrier_energy, rot_barrier_energy, sitedensity, rotationalminima, potentialenergy=0., mass=None, inertia=None, atoms=None, symmetrynumber=1): self.vib_energies = sorted(vib_energies, reverse=True)[:-3] self.trans_barrier_energy = trans_barrier_energy * units._e self.rot_barrier_energy = rot_barrier_energy * units._e self.area = 1. / sitedensity / 100.0**2 self.rotationalminima = rotationalminima self.potentialenergy = potentialenergy self.atoms = atoms self.symmetry = symmetrynumber if (mass or atoms) and (inertia or atoms): if mass: self.mass = mass * units._amu elif atoms: self.mass = np.sum(atoms.get_masses()) * units._amu if inertia: self.inertia = inertia * units._amu / units.m**2 elif atoms: self.inertia = (atoms.get_moments_of_inertia()[2] * units._amu / units.m**2) else: raise RuntimeError('Either mass and inertia of the ' 'adsorbate must be specified or ' 'atoms must be specified.') # Make sure no imaginary frequencies remain. if sum(np.iscomplex(self.vib_energies)): raise ValueError('Imaginary frequencies are present.') else: self.vib_energies = np.real(self.vib_energies) # clear +0.j # Calculate hindered translational and rotational frequencies self.freq_t = np.sqrt(self.trans_barrier_energy / (2 * self.mass * self.area)) self.freq_r = 1. / (2 * np.pi) * np.sqrt(self.rotationalminima**2 * self.rot_barrier_energy / (2 * self.inertia))
[docs] def get_internal_energy(self, temperature, verbose=True): """Returns the internal energy (including the zero point energy), in eV, in the hindered translator and hindered rotor model at a specified temperature (K).""" from scipy.special import iv self.verbose = verbose write = self._vprint fmt = '%-15s%13.3f eV' write('Internal energy components at T = %.2f K:' % temperature) write('=' * 31) U = 0. write(fmt % ('E_pot', self.potentialenergy)) U += self.potentialenergy # Translational Energy T_t = units._k * temperature / (units._hplanck * self.freq_t) R_t = self.trans_barrier_energy / (units._hplanck * self.freq_t) dU_t = 2 * (-1. / 2 - 1. / T_t / (2 + 16 * R_t) + R_t / 2 / T_t - R_t / 2 / T_t * iv(1, R_t / 2 / T_t) / iv(0, R_t / 2 / T_t) + 1. / T_t / (np.exp(1. / T_t) - 1)) dU_t *= units.kB * temperature write(fmt % ('E_trans', dU_t)) U += dU_t # Rotational Energy T_r = units._k * temperature / (units._hplanck * self.freq_r) R_r = self.rot_barrier_energy / (units._hplanck * self.freq_r) dU_r = (-1. / 2 - 1. / T_r / (2 + 16 * R_r) + R_r / 2 / T_r - R_r / 2 / T_r * iv(1, R_r / 2 / T_r) / iv(0, R_r / 2 / T_r) + 1. / T_r / (np.exp(1. / T_r) - 1)) dU_r *= units.kB * temperature write(fmt % ('E_rot', dU_r)) U += dU_r # Vibrational Energy dU_v = self._vibrational_energy_contribution(temperature) write(fmt % ('E_vib', dU_v)) U += dU_v # Zero Point Energy dU_zpe = self.get_zero_point_energy() write(fmt % ('E_ZPE', dU_zpe)) U += dU_zpe write('-' * 31) write(fmt % ('U', U)) write('=' * 31) return U
[docs] def get_zero_point_energy(self, verbose=True): """Returns the zero point energy, in eV, in the hindered translator and hindered rotor model""" zpe_t = 2 * (1. / 2 * self.freq_t * units._hplanck / units._e) zpe_r = 1. / 2 * self.freq_r * units._hplanck / units._e zpe_v = self.get_ZPE_correction() zpe = zpe_t + zpe_r + zpe_v return zpe
[docs] def get_entropy(self, temperature, verbose=True): """Returns the entropy, in eV/K, in the hindered translator and hindered rotor model at a specified temperature (K).""" from scipy.special import iv self.verbose = verbose write = self._vprint fmt = '%-15s%13.7f eV/K%13.3f eV' write('Entropy components at T = %.2f K:' % temperature) write('=' * 49) write('%15s%13s %13s' % ('', 'S', 'T*S')) S = 0. # Translational Entropy T_t = units._k * temperature / (units._hplanck * self.freq_t) R_t = self.trans_barrier_energy / (units._hplanck * self.freq_t) S_t = 2 * (-1. / 2 + 1. / 2 * np.log(np.pi * R_t / T_t) - R_t / 2 / T_t * iv(1, R_t / 2 / T_t) / iv(0, R_t / 2 / T_t) + np.log(iv(0, R_t / 2 / T_t)) + 1. / T_t / (np.exp(1. / T_t) - 1) - np.log(1 - np.exp(-1. / T_t))) S_t *= units.kB write(fmt % ('S_trans', S_t, S_t * temperature)) S += S_t # Rotational Entropy T_r = units._k * temperature / (units._hplanck * self.freq_r) R_r = self.rot_barrier_energy / (units._hplanck * self.freq_r) S_r = (-1. / 2 + 1. / 2 * np.log(np.pi * R_r / T_r) - np.log(self.symmetry) - R_r / 2 / T_r * iv(1, R_r / 2 / T_r) / iv(0, R_r / 2 / T_r) + np.log(iv(0, R_r / 2 / T_r)) + 1. / T_r / (np.exp(1. / T_r) - 1) - np.log(1 - np.exp(-1. / T_r))) S_r *= units.kB write(fmt % ('S_rot', S_r, S_r * temperature)) S += S_r # Vibrational Entropy S_v = self._vibrational_entropy_contribution(temperature) write(fmt % ('S_vib', S_v, S_v * temperature)) S += S_v # Concentration Related Entropy N_over_A = np.exp(1. / 3) * (10.0**5 / (units._k * temperature))**(2. / 3) S_c = 1 - np.log(N_over_A) - np.log(self.area) S_c *= units.kB write(fmt % ('S_con', S_c, S_c * temperature)) S += S_c write('-' * 49) write(fmt % ('S', S, S * temperature)) write('=' * 49) return S
[docs] def get_helmholtz_energy(self, temperature, verbose=True): """Returns the Helmholtz free energy, in eV, in the hindered translator and hindered rotor model at a specified temperature (K).""" self.verbose = True write = self._vprint U = self.get_internal_energy(temperature, verbose=verbose) write('') S = self.get_entropy(temperature, verbose=verbose) F = U - temperature * S write('') write('Free energy components at T = %.2f K:' % temperature) write('=' * 23) fmt = '%5s%15.3f eV' write(fmt % ('U', U)) write(fmt % ('-T*S', -temperature * S)) write('-' * 23) write(fmt % ('F', F)) write('=' * 23) return F
[docs]class IdealGasThermo(ThermoChem): """Class for calculating thermodynamic properties of a molecule based on statistical mechanical treatments in the ideal gas approximation. Inputs for enthalpy calculations: vib_energies : list a list of the vibrational energies of the molecule (e.g., from ase.vibrations.Vibrations.get_energies). The number of vibrations used is automatically calculated by the geometry and the number of atoms. If more are specified than are needed, then the lowest numbered vibrations are neglected. If either atoms or natoms is unspecified, then uses the entire list. Units are eV. geometry : 'monatomic', 'linear', or 'nonlinear' geometry of the molecule potentialenergy : float the potential energy in eV (e.g., from atoms.get_potential_energy) (if potentialenergy is unspecified, then the methods of this class can be interpreted as the energy corrections) natoms : integer the number of atoms, used along with 'geometry' to determine how many vibrations to use. (Not needed if an atoms object is supplied in 'atoms' or if the user desires the entire list of vibrations to be used.) Extra inputs needed for entropy / free energy calculations: atoms : an ASE atoms object used to calculate rotational moments of inertia and molecular mass symmetrynumber : integer symmetry number of the molecule. See, for example, Table 10.1 and Appendix B of C. Cramer "Essentials of Computational Chemistry", 2nd Ed. spin : float the total electronic spin. (0 for molecules in which all electrons are paired, 0.5 for a free radical with a single unpaired electron, 1.0 for a triplet with two unpaired electrons, such as O_2.) """ def __init__(self, vib_energies, geometry, potentialenergy=0., atoms=None, symmetrynumber=None, spin=None, natoms=None): self.potentialenergy = potentialenergy self.geometry = geometry self.atoms = atoms self.sigma = symmetrynumber self.spin = spin if natoms is None: if atoms: natoms = len(atoms) # Cut the vibrations to those needed from the geometry. if natoms: if geometry == 'nonlinear': self.vib_energies = vib_energies[-(3 * natoms - 6):] elif geometry == 'linear': self.vib_energies = vib_energies[-(3 * natoms - 5):] elif geometry == 'monatomic': self.vib_energies = [] else: self.vib_energies = vib_energies # Make sure no imaginary frequencies remain. if sum(np.iscomplex(self.vib_energies)): raise ValueError('Imaginary frequencies are present.') else: self.vib_energies = np.real(self.vib_energies) # clear +0.j self.referencepressure = 1.0e5 # Pa
[docs] def get_enthalpy(self, temperature, verbose=True): """Returns the enthalpy, in eV, in the ideal gas approximation at a specified temperature (K).""" self.verbose = verbose write = self._vprint fmt = '%-15s%13.3f eV' write('Enthalpy components at T = %.2f K:' % temperature) write('=' * 31) H = 0. write(fmt % ('E_pot', self.potentialenergy)) H += self.potentialenergy zpe = self.get_ZPE_correction() write(fmt % ('E_ZPE', zpe)) H += zpe Cv_t = 3. / 2. * units.kB # translational heat capacity (3-d gas) write(fmt % ('Cv_trans (0->T)', Cv_t * temperature)) H += Cv_t * temperature if self.geometry == 'nonlinear': # rotational heat capacity Cv_r = 3. / 2. * units.kB elif self.geometry == 'linear': Cv_r = units.kB elif self.geometry == 'monatomic': Cv_r = 0. write(fmt % ('Cv_rot (0->T)', Cv_r * temperature)) H += Cv_r * temperature dH_v = self._vibrational_energy_contribution(temperature) write(fmt % ('Cv_vib (0->T)', dH_v)) H += dH_v Cp_corr = units.kB * temperature write(fmt % ('(C_v -> C_p)', Cp_corr)) H += Cp_corr write('-' * 31) write(fmt % ('H', H)) write('=' * 31) return H
[docs] def get_entropy(self, temperature, pressure, verbose=True): """Returns the entropy, in eV/K, in the ideal gas approximation at a specified temperature (K) and pressure (Pa).""" if self.atoms is None or self.sigma is None or self.spin is None: raise RuntimeError('atoms, symmetrynumber, and spin must be ' 'specified for entropy and free energy ' 'calculations.') self.verbose = verbose write = self._vprint fmt = '%-15s%13.7f eV/K%13.3f eV' write('Entropy components at T = %.2f K and P = %.1f Pa:' % (temperature, pressure)) write('=' * 49) write('%15s%13s %13s' % ('', 'S', 'T*S')) S = 0.0 # Translational entropy (term inside the log is in SI units). mass = sum(self.atoms.get_masses()) * units._amu # kg/molecule S_t = (2 * np.pi * mass * units._k * temperature / units._hplanck**2)**(3.0 / 2) S_t *= units._k * temperature / self.referencepressure S_t = units.kB * (np.log(S_t) + 5.0 / 2.0) write(fmt % ('S_trans (1 bar)', S_t, S_t * temperature)) S += S_t # Rotational entropy (term inside the log is in SI units). if self.geometry == 'monatomic': S_r = 0.0 elif self.geometry == 'nonlinear': inertias = (self.atoms.get_moments_of_inertia() * units._amu / (10.0**10)**2) # kg m^2 S_r = np.sqrt(np.pi * np.product(inertias)) / self.sigma S_r *= (8.0 * np.pi**2 * units._k * temperature / units._hplanck**2)**(3.0 / 2.0) S_r = units.kB * (np.log(S_r) + 3.0 / 2.0) elif self.geometry == 'linear': inertias = (self.atoms.get_moments_of_inertia() * units._amu / (10.0**10)**2) # kg m^2 inertia = max(inertias) # should be two identical and one zero S_r = (8 * np.pi**2 * inertia * units._k * temperature / self.sigma / units._hplanck**2) S_r = units.kB * (np.log(S_r) + 1.) write(fmt % ('S_rot', S_r, S_r * temperature)) S += S_r # Electronic entropy. S_e = units.kB * np.log(2 * self.spin + 1) write(fmt % ('S_elec', S_e, S_e * temperature)) S += S_e # Vibrational entropy. S_v = self._vibrational_entropy_contribution(temperature) write(fmt % ('S_vib', S_v, S_v * temperature)) S += S_v # Pressure correction to translational entropy. S_p = - units.kB * np.log(pressure / self.referencepressure) write(fmt % ('S (1 bar -> P)', S_p, S_p * temperature)) S += S_p write('-' * 49) write(fmt % ('S', S, S * temperature)) write('=' * 49) return S
[docs] def get_gibbs_energy(self, temperature, pressure, verbose=True): """Returns the Gibbs free energy, in eV, in the ideal gas approximation at a specified temperature (K) and pressure (Pa).""" self.verbose = verbose write = self._vprint H = self.get_enthalpy(temperature, verbose=verbose) write('') S = self.get_entropy(temperature, pressure, verbose=verbose) G = H - temperature * S write('') write('Free energy components at T = %.2f K and P = %.1f Pa:' % (temperature, pressure)) write('=' * 23) fmt = '%5s%15.3f eV' write(fmt % ('H', H)) write(fmt % ('-T*S', -temperature * S)) write('-' * 23) write(fmt % ('G', G)) write('=' * 23) return G
[docs]class CrystalThermo(ThermoChem): """Class for calculating thermodynamic properties of a crystalline solid in the approximation that a lattice of N atoms behaves as a system of 3N independent harmonic oscillators. Inputs: phonon_DOS : list a list of the phonon density of states, where each value represents the phonon DOS at the vibrational energy value of the corresponding index in phonon_energies. phonon_energies : list a list of the range of vibrational energies (hbar*omega) over which the phonon density of states has been evaluated. This list should be the same length as phonon_DOS and integrating phonon_DOS over phonon_energies should yield approximately 3N, where N is the number of atoms per unit cell. If the first element of this list is zero-valued it will be deleted along with the first element of phonon_DOS. Units of vibrational energies are eV. potentialenergy : float the potential energy in eV (e.g., from atoms.get_potential_energy) (if potentialenergy is unspecified, then the methods of this class can be interpreted as the energy corrections) formula_units : int the number of formula units per unit cell. If unspecified, the thermodynamic quantities calculated will be listed on a per-unit-cell basis. """ def __init__(self, phonon_DOS, phonon_energies, formula_units=None, potentialenergy=0.): self.phonon_energies = phonon_energies self.phonon_DOS = phonon_DOS if formula_units: self.formula_units = formula_units self.potentialenergy = potentialenergy / formula_units else: self.formula_units = 0 self.potentialenergy = potentialenergy
[docs] def get_internal_energy(self, temperature, verbose=True): """Returns the internal energy, in eV, of crystalline solid at a specified temperature (K).""" self.verbose = verbose write = self._vprint fmt = '%-15s%13.4f eV' if self.formula_units == 0: write('Internal energy components at ' 'T = %.2f K,\non a per-unit-cell basis:' % temperature) else: write('Internal energy components at ' 'T = %.2f K,\non a per-formula-unit basis:' % temperature) write('=' * 31) U = 0. omega_e = self.phonon_energies dos_e = self.phonon_DOS if omega_e[0] == 0.: omega_e = np.delete(omega_e, 0) dos_e = np.delete(dos_e, 0) write(fmt % ('E_pot', self.potentialenergy)) U += self.potentialenergy zpe_list = omega_e / 2. if self.formula_units == 0: zpe = np.trapz(zpe_list * dos_e, omega_e) else: zpe = np.trapz(zpe_list * dos_e, omega_e) / self.formula_units write(fmt % ('E_ZPE', zpe)) U += zpe B = 1. / (units.kB * temperature) E_vib = omega_e / (np.exp(omega_e * B) - 1.) if self.formula_units == 0: E_phonon = np.trapz(E_vib * dos_e, omega_e) else: E_phonon = np.trapz(E_vib * dos_e, omega_e) / self.formula_units write(fmt % ('E_phonon', E_phonon)) U += E_phonon write('-' * 31) write(fmt % ('U', U)) write('=' * 31) return U
[docs] def get_entropy(self, temperature, verbose=True): """Returns the entropy, in eV/K, of crystalline solid at a specified temperature (K).""" self.verbose = verbose write = self._vprint fmt = '%-15s%13.7f eV/K%13.4f eV' if self.formula_units == 0: write('Entropy components at ' 'T = %.2f K,\non a per-unit-cell basis:' % temperature) else: write('Entropy components at ' 'T = %.2f K,\non a per-formula-unit basis:' % temperature) write('=' * 49) write('%15s%13s %13s' % ('', 'S', 'T*S')) omega_e = self.phonon_energies dos_e = self.phonon_DOS if omega_e[0] == 0.: omega_e = np.delete(omega_e, 0) dos_e = np.delete(dos_e, 0) B = 1. / (units.kB * temperature) S_vib = (omega_e / (temperature * (np.exp(omega_e * B) - 1.)) - units.kB * np.log(1. - np.exp(-omega_e * B))) if self.formula_units == 0: S = np.trapz(S_vib * dos_e, omega_e) else: S = np.trapz(S_vib * dos_e, omega_e) / self.formula_units write('-' * 49) write(fmt % ('S', S, S * temperature)) write('=' * 49) return S
[docs] def get_helmholtz_energy(self, temperature, verbose=True): """Returns the Helmholtz free energy, in eV, of crystalline solid at a specified temperature (K).""" self.verbose = True write = self._vprint U = self.get_internal_energy(temperature, verbose=verbose) write('') S = self.get_entropy(temperature, verbose=verbose) F = U - temperature * S write('') if self.formula_units == 0: write('Helmholtz free energy components at ' 'T = %.2f K,\non a per-unit-cell basis:' % temperature) else: write('Helmholtz free energy components at ' 'T = %.2f K,\non a per-formula-unit basis:' % temperature) write('=' * 23) fmt = '%5s%15.4f eV' write(fmt % ('U', U)) write(fmt % ('-T*S', -temperature * S)) write('-' * 23) write(fmt % ('F', F)) write('=' * 23) return F