Source code for ase.optimize.sciopt

import numpy as np
import scipy.optimize as opt
from ase.optimize.optimize import Optimizer


class Converged(Exception):
    pass


class OptimizerConvergenceError(Exception):
    pass


class SciPyOptimizer(Optimizer):
    """General interface for SciPy optimizers

    Only the call to the optimizer is still needed
    """
    def __init__(self, atoms, logfile='-', trajectory=None,
                 callback_always=False, alpha=70.0, master=None,
                 force_consistent=None):
        """Initialize object

        Parameters:

        atoms: Atoms object
            The Atoms object to relax.

        trajectory: string
            Pickle file used to store trajectory of atomic movement.

        logfile: file object or str
            If *logfile* is a string, a file with that name will be opened.
            Use '-' for stdout.

        callback_always: book
            Should the callback be run after each force call (also in the
            linesearch)

        alpha: float
            Initial guess for the Hessian (curvature of energy surface). A
            conservative value of 70.0 is the default, but number of needed
            steps to converge might be less if a lower value is used. However,
            a lower value also means risk of instability.

        master: boolean
            Defaults to None, which causes only rank 0 to save files.  If
            set to true,  this rank will save files.

        force_consistent: boolean or None
            Use force-consistent energy calls (as opposed to the energy
            extrapolated to 0 K).  By default (force_consistent=None) uses
            force-consistent energies if available in the calculator, but
            falls back to force_consistent=False if not.
        """
        restart = None
        Optimizer.__init__(self, atoms, restart, logfile, trajectory,
                           master, force_consistent=force_consistent)
        self.force_calls = 0
        self.callback_always = callback_always
        self.H0 = alpha

    def x0(self):
        """Return x0 in a way SciPy can use

        This class is mostly usable for subclasses wanting to redefine the
        parameters (and the objective function)"""
        return self.atoms.get_positions().reshape(-1)

    def f(self, x):
        """Objective function for use of the optimizers"""
        self.atoms.set_positions(x.reshape(-1, 3))
        # Scale the problem as SciPy uses I as initial Hessian.
        return (self.atoms.get_potential_energy(
                force_consistent=self.force_consistent) / self.H0)

    def fprime(self, x):
        """Gradient of the objective function for use of the optimizers"""
        self.atoms.set_positions(x.reshape(-1, 3))
        self.force_calls += 1

        if self.callback_always:
            self.callback(x)

        # Remember that forces are minus the gradient!
        # Scale the problem as SciPy uses I as initial Hessian.
        return - self.atoms.get_forces().reshape(-1) / self.H0

    def callback(self, x):
        """Callback function to be run after each iteration by SciPy

        This should also be called once before optimization starts, as SciPy
        optimizers only calls it after each iteration, while ase optimizers
        call something similar before as well.
        
        :meth:`callback`() can raise a :exc:`Converged` exception to signal the
        optimisation is complete. This will be silently ignored by
        :meth:`run`().
        """
        f = self.atoms.get_forces()
        self.log(f)
        self.call_observers()
        if self.converged(f):
            raise Converged
        self.nsteps += 1

    def run(self, fmax=0.05, steps=100000000):
        if self.force_consistent is None:
            self.set_force_consistent()
        self.fmax = fmax
        try:
            # As SciPy does not log the zeroth iteration, we do that manually
            self.callback(None)
            # Scale the problem as SciPy uses I as initial Hessian.
            self.call_fmin(fmax / self.H0, steps)
        except Converged:
            pass

    def dump(self, data):
        pass

    def load(self):
        pass

    def call_fmin(self, fmax, steps):
        raise NotImplementedError


[docs]class SciPyFminCG(SciPyOptimizer): """Non-linear (Polak-Ribiere) conjugate gradient algorithm""" def call_fmin(self, fmax, steps): output = opt.fmin_cg(self.f, self.x0(), fprime=self.fprime, # args=(), gtol=fmax * 0.1, # Should never be reached norm=np.inf, # epsilon= maxiter=steps, full_output=1, disp=0, # retall=0, callback=self.callback) warnflag = output[-1] if warnflag == 2: raise OptimizerConvergenceError( 'Warning: Desired error not necessarily achieved ' 'due to precision loss')
[docs]class SciPyFminBFGS(SciPyOptimizer): """Quasi-Newton method (Broydon-Fletcher-Goldfarb-Shanno)""" def call_fmin(self, fmax, steps): output = opt.fmin_bfgs(self.f, self.x0(), fprime=self.fprime, # args=(), gtol=fmax * 0.1, # Should never be reached norm=np.inf, # epsilon=1.4901161193847656e-08, maxiter=steps, full_output=1, disp=0, # retall=0, callback=self.callback) warnflag = output[-1] if warnflag == 2: raise OptimizerConvergenceError( 'Warning: Desired error not necessarily achieved ' 'due to precision loss')
class SciPyGradientlessOptimizer(Optimizer): """General interface for gradient less SciPy optimizers Only the call to the optimizer is still needed Note: If you redefine x0() and f(), you don't even need an atoms object. Redefining these also allows you to specify an arbitrary objective function. XXX: This is still a work in progress """ def __init__(self, atoms, logfile='-', trajectory=None, callback_always=False, master=None, force_consistent=None): """Initialize object Parameters: atoms: Atoms object The Atoms object to relax. trajectory: string Pickle file used to store trajectory of atomic movement. logfile: file object or str If *logfile* is a string, a file with that name will be opened. Use '-' for stdout. callback_always: book Should the callback be run after each force call (also in the linesearch) alpha: float Initial guess for the Hessian (curvature of energy surface). A conservative value of 70.0 is the default, but number of needed steps to converge might be less if a lower value is used. However, a lower value also means risk of instability. master: boolean Defaults to None, which causes only rank 0 to save files. If set to true, this rank will save files. force_consistent: boolean or None Use force-consistent energy calls (as opposed to the energy extrapolated to 0 K). By default (force_consistent=None) uses force-consistent energies if available in the calculator, but falls back to force_consistent=False if not. """ restart = None Optimizer.__init__(self, atoms, restart, logfile, trajectory, master, force_consistent=force_consistent) self.function_calls = 0 self.callback_always = callback_always def x0(self): """Return x0 in a way SciPy can use This class is mostly usable for subclasses wanting to redefine the parameters (and the objective function)""" return self.atoms.get_positions().reshape(-1) def f(self, x): """Objective function for use of the optimizers""" self.atoms.set_positions(x.reshape(-1, 3)) self.function_calls += 1 # Scale the problem as SciPy uses I as initial Hessian. return self.atoms.get_potential_energy( force_consistent=self.force_consistent) def callback(self, x): """Callback function to be run after each iteration by SciPy This should also be called once before optimization starts, as SciPy optimizers only calls it after each iteration, while ase optimizers call something similar before as well. """ # We can't assume that forces are available! # f = self.atoms.get_forces() # self.log(f) self.call_observers() # if self.converged(f): # raise Converged self.nsteps += 1 def run(self, ftol=0.01, xtol=0.01, steps=100000000): if self.force_consistent is None: self.set_force_consistent() self.xtol = xtol self.ftol = ftol # As SciPy does not log the zeroth iteration, we do that manually self.callback(None) try: # Scale the problem as SciPy uses I as initial Hessian. self.call_fmin(xtol, ftol, steps) except Converged: pass def dump(self, data): pass def load(self): pass def call_fmin(self, fmax, steps): raise NotImplementedError class SciPyFmin(SciPyGradientlessOptimizer): """Nelder-Mead Simplex algorithm Uses only function calls. XXX: This is still a work in progress """ def call_fmin(self, xtol, ftol, steps): opt.fmin(self.f, self.x0(), # args=(), xtol=xtol, ftol=ftol, maxiter=steps, # maxfun=None, # full_output=1, disp=0, # retall=0, callback=self.callback) class SciPyFminPowell(SciPyGradientlessOptimizer): """Powell's (modified) level set method Uses only function calls. XXX: This is still a work in progress """ def __init__(self, *args, **kwargs): """Parameters: direc: float How much to change x to initially. Defaults to 0.04. """ direc = kwargs.pop('direc', None) SciPyGradientlessOptimizer.__init__(self, *args, **kwargs) if direc is None: self.direc = np.eye(len(self.x0()), dtype=float) * 0.04 else: self.direc = np.eye(len(self.x0()), dtype=float) * direc def call_fmin(self, xtol, ftol, steps): opt.fmin_powell(self.f, self.x0(), # args=(), xtol=xtol, ftol=ftol, maxiter=steps, # maxfun=None, # full_output=1, disp=0, # retall=0, callback=self.callback, direc=self.direc)