import re
import warnings
from collections.abc import Iterable
from copy import deepcopy
import numpy as np
from ase import Atoms
from ase.calculators.calculator import InputError, Calculator
from ase.calculators.gaussian import Gaussian
from ase.calculators.singlepoint import SinglePointCalculator
from ase.data import atomic_masses_iupac2016, chemical_symbols
from ase.io import ParseError
from ase.io.zmatrix import parse_zmatrix
from ase.units import Bohr, Hartree
_link0_keys = [
'mem',
'chk',
'oldchk',
'schk',
'rwf',
'oldmatrix',
'oldrawmatrix',
'int',
'd2e',
'save',
'nosave',
'errorsave',
'cpu',
'nprocshared',
'gpucpu',
'lindaworkers',
'usessh',
'ssh',
'debuglinda',
]
_link0_special = [
'kjob',
'subst',
]
# Certain problematic methods do not provide well-defined potential energy
# surfaces, because these "composite" methods involve geometry optimization
# and/or vibrational frequency analysis. In addition, the "energy" calculated
# by these methods are typically ZPVE corrected and/or temperature dependent
# free energies.
_problem_methods = [
'cbs-4m', 'cbs-qb3', 'cbs-apno',
'g1', 'g2', 'g3', 'g4', 'g2mp2', 'g3mp2', 'g3b3', 'g3mp2b3', 'g4mp4',
'w1', 'w1u', 'w1bd', 'w1ro',
]
_xc_to_method = dict(
pbe='pbepbe',
pbe0='pbe1pbe',
hse06='hseh1pbe',
hse03='ohse2pbe',
lda='svwn', # gaussian "knows about" LSDA, but maybe not LDA.
tpss='tpsstpss',
revtpss='revtpssrevtpss',
)
_nuclear_prop_names = ['spin', 'zeff', 'qmom', 'nmagm', 'znuc',
'radnuclear', 'iso']
def _get_molecule_spec(atoms, nuclear_props):
''' Generate the molecule specification section to write
to the Gaussian input file, from the Atoms object and dict
of nuclear properties'''
molecule_spec = []
for i, atom in enumerate(atoms):
symbol_section = atom.symbol + '('
# Check whether any nuclear properties of the atom have been set,
# and if so, add them to the symbol section.
nuclear_props_set = False
for keyword, array in nuclear_props.items():
if array is not None and array[i] is not None:
string = keyword + '=' + str(array[i]) + ', '
symbol_section += string
nuclear_props_set = True
# Check whether the mass of the atom has been modified,
# and if so, add it to the symbol section:
mass_set = False
symbol = atom.symbol
expected_mass = atomic_masses_iupac2016[chemical_symbols.index(
symbol)]
if expected_mass != atoms[i].mass:
mass_set = True
string = 'iso' + '=' + str(atoms[i].mass)
symbol_section += string
if nuclear_props_set or mass_set:
symbol_section = symbol_section.strip(', ')
symbol_section += ')'
else:
symbol_section = symbol_section.strip('(')
# Then attach the properties appropriately
# this formatting was chosen for backwards compatibility reasons, but
# it would probably be better to
# 1) Ensure proper spacing between entries with explicit spaces
# 2) Use fewer columns for the element
# 3) Use 'e' (scientific notation) instead of 'f' for positions
molecule_spec.append('{:<10s}{:20.10f}{:20.10f}{:20.10f}'.format(
symbol_section, *atom.position))
# unit cell vectors, in case of periodic boundary conditions
for ipbc, tv in zip(atoms.pbc, atoms.cell):
if ipbc:
molecule_spec.append('TV {:20.10f}{:20.10f}{:20.10f}'.format(*tv))
molecule_spec.append('')
return molecule_spec
def _format_output_type(output_type):
''' Given a letter: output_type, return
a string formatted for a gaussian input file'''
# Change output type to P if it has been set to T, because ASE
# does not support reading info from 'terse' output files.
if output_type is None or output_type == '' or 't' in output_type.lower():
output_type = 'P'
return '#{}'.format(output_type)
def _check_problem_methods(method):
''' Check method string for problem methods and warn appropriately'''
if method.lower() in _problem_methods:
warnings.warn(
'The requested method, {}, is a composite method. Composite '
'methods do not have well-defined potential energy surfaces, '
'so the energies, forces, and other properties returned by '
'ASE may not be meaningful, or they may correspond to a '
'different geometry than the one provided. '
'Please use these methods with caution.'.format(method)
)
def _pop_link0_params(params):
'''Takes the params dict and returns a dict with the link0 keywords
removed, and a list containing the link0 keywords and options
to be written to the gaussian input file'''
params = deepcopy(params)
out = []
# Remove keywords from params, so they are not set again later in
# route section
for key in _link0_keys:
if key not in params:
continue
val = params.pop(key)
if not val or (isinstance(val, str) and key.lower() == val.lower()):
out.append('%{}'.format(key))
else:
out.append('%{}={}'.format(key, val))
# These link0 keywords have a slightly different syntax
for key in _link0_special:
if key not in params:
continue
val = params.pop(key)
if not isinstance(val, str) and isinstance(val, Iterable):
val = ' '.join(val)
out.append('%{} L{}'.format(key, val))
return params, out
def _format_method_basis(output_type, method, basis, fitting_basis):
output_string = ""
if basis and method and fitting_basis:
output_string = '{} {}/{}/{} ! ASE formatted method and basis'.format(
output_type, method, basis, fitting_basis)
elif basis and method:
output_string = '{} {}/{} ! ASE formatted method and basis'.format(
output_type, method, basis)
else:
output_string = '{}'.format(output_type)
for value in [method, basis]:
if value is not None:
output_string += ' {}'.format(value)
return output_string
def _format_route_params(params):
'''Get keywords and values from the params dictionary and return
as a list of lines to add to the gaussian input file'''
out = []
for key, val in params.items():
# assume bare keyword if val is falsey, i.e. '', None, False, etc.
# also, for backwards compatibility: assume bare keyword if key and
# val are the same
if not val or (isinstance(val, str) and key.lower() == val.lower()):
out.append(key)
elif not isinstance(val, str) and isinstance(val, Iterable):
out.append('{}({})'.format(key, ','.join(val)))
else:
out.append('{}({})'.format(key, val))
return out
def _format_addsec(addsec):
'''Format addsec string as a list of lines to be added to the gaussian
input file.'''
out = []
if addsec is not None:
out.append('')
if isinstance(addsec, str):
out.append(addsec)
elif isinstance(addsec, Iterable):
out += list(addsec)
return out
def _format_basis_set(basis, basisfile, basis_set):
'''Format either: the basis set filename (basisfile), the basis set file
contents (from reading basisfile), or the basis_set text as a list of
strings to be added to the gaussian input file.'''
out = []
# if basis='gen', set basisfile. Either give a path to a basisfile, or
# read in the provided file and paste it verbatim
if basisfile is not None:
if basisfile[0] == '@':
out.append(basisfile)
else:
with open(basisfile, 'r') as fd:
out.append(fd.read())
elif basis_set is not None:
out.append(basis_set)
else:
if basis is not None and basis.lower() == 'gen':
raise InputError('Please set basisfile or basis_set')
return out
[docs]def write_gaussian_in(fd, atoms, properties=['energy'],
method=None, basis=None, fitting_basis=None,
output_type='P', basisfile=None, basis_set=None,
xc=None, charge=None, mult=None, extra=None,
ioplist=None, addsec=None, spinlist=None,
zefflist=None, qmomlist=None, nmagmlist=None,
znuclist=None, radnuclearlist=None,
**params):
'''
Generates a Gaussian input file
Parameters
-----------
fd: file-like
where the Gaussian input file will be written
atoms: Atoms
Structure to write to the input file
properties: list
Properties to calculate
method: str
Level of theory to use, e.g. ``hf``, ``ccsd``, ``mp2``, or ``b3lyp``.
Overrides ``xc`` (see below).
xc: str
Level of theory to use. Translates several XC functionals from
their common name (e.g. ``PBE``) to their internal Gaussian name
(e.g. ``PBEPBE``).
basis: str
The basis set to use. If not provided, no basis set will be requested,
which usually results in ``STO-3G``. Maybe omitted if basisfile is set
(see below).
fitting_basis: str
The name of the fitting basis set to use.
output_type: str
Level of output to record in the Gaussian
output file - this may be ``N``- normal or ``P`` -
additional.
basisfile: str
The name of the basis file to use. If a value is provided, basis may
be omitted (it will be automatically set to 'gen')
basis_set: str
The basis set definition to use. This is an alternative
to basisfile, and would be the same as the contents
of such a file.
charge: int
The system charge. If not provided, it will be automatically
determined from the ``Atoms`` object’s initial_charges.
mult: int
The system multiplicity (``spin + 1``). If not provided, it will be
automatically determined from the ``Atoms`` object’s
``initial_magnetic_moments``.
extra: str
Extra lines to be included in the route section verbatim.
It should not be necessary to use this, but it is included for
backwards compatibility.
ioplist: list
A collection of IOPs definitions to be included in the route line.
addsec: str
Text to be added after the molecular geometry specification, e.g. for
defining masses with ``freq=ReadIso``.
spinlist: list
A list of nuclear spins to be added into the nuclear
propeties section of the molecule specification.
zefflist: list
A list of effective charges to be added into the nuclear
propeties section of the molecule specification.
qmomlist: list
A list of nuclear quadropole moments to be added into
the nuclear propeties section of the molecule
specification.
nmagmlist: list
A list of nuclear magnetic moments to be added into
the nuclear propeties section of the molecule
specification.
znuclist: list
A list of nuclear charges to be added into the nuclear
propeties section of the molecule specification.
radnuclearlist: list
A list of nuclear radii to be added into the nuclear
propeties section of the molecule specification.
params: dict
Contains any extra keywords and values that will be included in either
the link0 section or route section of the gaussian input file.
To be included in the link0 section, the keyword must be one of the
following: ``mem``, ``chk``, ``oldchk``, ``schk``, ``rwf``,
``oldmatrix``, ``oldrawmatrix``, ``int``, ``d2e``, ``save``,
``nosave``, ``errorsave``, ``cpu``, ``nprocshared``, ``gpucpu``,
``lindaworkers``, ``usessh``, ``ssh``, ``debuglinda``.
Any other keywords will be placed (along with their values) in the
route section.
'''
params = deepcopy(params)
if properties is None:
properties = ['energy']
output_type = _format_output_type(output_type)
# basis can be omitted if basisfile is provided
if basis is None:
if basisfile is not None or basis_set is not None:
basis = 'gen'
# determine method from xc if it is provided
if method is None:
if xc is not None:
method = _xc_to_method.get(xc.lower(), xc)
# If the user requests a problematic method, rather than raising an error
# or proceeding blindly, give the user a warning that the results parsed
# by ASE may not be meaningful.
if method is not None:
_check_problem_methods(method)
# determine charge from initial charges if not passed explicitly
if charge is None:
charge = atoms.get_initial_charges().sum()
# determine multiplicity from initial magnetic moments
# if not passed explicitly
if mult is None:
mult = atoms.get_initial_magnetic_moments().sum() + 1
# set up link0 arguments
out = []
params, link0_list = _pop_link0_params(params)
out.extend(link0_list)
# begin route line
# note: unlike in old calculator, each route keyword is put on its own
# line.
out.append(_format_method_basis(output_type, method, basis, fitting_basis))
# If the calculator's parameter dictionary contains an isolist, we ignore
# this - it is up to the user to attach this info as the atoms' masses
# if they wish for it to be used:
params.pop('isolist', None)
# Any params left will belong in the route section of the file:
out.extend(_format_route_params(params))
if ioplist is not None:
out.append('IOP(' + ', '.join(ioplist) + ')')
# raw list of explicit keywords for backwards compatibility
if extra is not None:
out.append(extra)
# Add 'force' iff the user requested forces, since Gaussian crashes when
# 'force' is combined with certain other keywords such as opt and irc.
if 'forces' in properties and 'force' not in params:
out.append('force')
# header, charge, and mult
out += ['', 'Gaussian input prepared by ASE', '',
'{:.0f} {:.0f}'.format(charge, mult)]
# make dict of nuclear properties:
nuclear_props = {'spin': spinlist, 'zeff': zefflist, 'qmom': qmomlist,
'nmagm': nmagmlist, 'znuc': znuclist,
'radnuclear': radnuclearlist}
nuclear_props = {k: v for k, v in nuclear_props.items() if v is not None}
# atomic positions and nuclear properties:
molecule_spec = _get_molecule_spec(atoms, nuclear_props)
for line in molecule_spec:
out.append(line)
out.extend(_format_basis_set(basis, basisfile, basis_set))
out.extend(_format_addsec(addsec))
out += ['', '']
fd.write('\n'.join(out))
# Regexp for reading an input file:
_re_link0 = re.compile(r'^\s*%([^\=\)\(!]+)=?([^\=\)\(!]+)?(!.+)?')
# Link0 lines are in the format:
# '% keyword = value' or '% keyword'
# (with or without whitespaces)
_re_output_type = re.compile(r'^\s*#\s*([NPTnpt]?)\s*')
# The start of the route section begins with a '#', and then may
# be followed by the desired level of output in the output file: P, N or T.
_re_method_basis = re.compile(
r"\s*([\w-]+)\s*\/([^/=!]+)([\/]([^!]+))?\s*(!.+)?")
# Matches method, basis and optional fitting basis in the format:
# method/basis/fitting_basis ! comment
# They will appear in this format if the Gaussian file has been generated
# by ASE using a calculator with the basis and method keywords set.
_re_chgmult = re.compile(r'^\s*[+-]?\d+(?:,\s*|\s+)[+-]?\d+\s*$')
# This is a bit more complex of a regex than we typically want, but it
# can be difficult to determine whether a line contains the charge and
# multiplicity, rather than just another route keyword. By making sure
# that the line contains exactly two *integers*, separated by either
# a comma (and possibly whitespace) or some amount of whitespace, we
# can be more confident that we've actually found the charge and multiplicity.
_re_nuclear_props = re.compile(r'\(([^\)]+)\)')
# Matches the nuclear properties, which are contained in parantheses.
# The following methods are used in GaussianConfiguration's
# parse_gaussian_input method:
def _get_link0_param(link0_match):
'''Gets link0 keyword and option from a re.Match and returns them
in a dictionary format'''
value = link0_match.group(2)
if value is not None:
value = value.strip()
else:
value = ''
return {link0_match.group(1).lower().strip(): value.lower()}
def _get_all_link0_params(link0_section):
''' Given a string link0_section which contains the link0
section of a gaussian input file, returns a dictionary of
keywords and values'''
parameters = {}
for line in link0_section:
link0_match = _re_link0.match(line)
link0_param = _get_link0_param(link0_match)
if link0_param is not None:
parameters.update(link0_param)
return parameters
def _convert_to_symbol(string):
'''Converts an input string into a format
that can be input to the 'symbol' parameter of an
ASE Atom object (can be a chemical symbol (str)
or an atomic number (int)).
This is achieved by either stripping any
integers from the string, or converting a string
containing an atomic number to integer type'''
symbol = _validate_symbol_string(string)
if symbol.isnumeric():
atomic_number = int(symbol)
symbol = chemical_symbols[atomic_number]
else:
match = re.match(r'([A-Za-z]+)', symbol)
symbol = match.group(1)
return symbol
def _validate_symbol_string(string):
if "-" in string:
raise ParseError("ERROR: Could not read the Gaussian input file, as"
" molecule specifications for molecular mechanics "
"calculations are not supported.")
return string
def _get_key_value_pairs(line):
'''Reads a line of a gaussian input file, which contains keywords and options
separated according to the rules of the route section.
Parameters
----------
line (string)
A line of a gaussian input file.
Returns
---------
params (dict)
Contains the keywords and options found in the line.
'''
params = {}
line = line.strip(' #')
line = line.split('!')[0] # removes any comments
# First, get the keywords and options sepatated with
# parantheses:
match_iterator = re.finditer(r'\(([^\)]+)\)', line)
index_ranges = []
for match in match_iterator:
index_range = [match.start(0), match.end(0)]
options = match.group(1)
# keyword is last word in previous substring:
keyword_string = line[:match.start(0)]
keyword_match_iter = [k for k in re.finditer(
r'[^\,/\s]+', keyword_string) if k.group() != '=']
keyword = keyword_match_iter[-1].group().strip(' =')
index_range[0] = keyword_match_iter[-1].start()
params.update({keyword.lower(): options.lower()})
index_ranges.append(index_range)
# remove from the line the keywords and options that we have saved:
index_ranges.reverse()
for index_range in index_ranges:
start = index_range[0]
stop = index_range[1]
line = line[0: start:] + line[stop + 1::]
# Next, get the keywords and options separated with
# an equals sign, and those without an equals sign
# must be keywords without options:
# remove any whitespaces around '=':
line = re.sub(r'\s*=\s*', '=', line)
line = [x for x in re.split(r'[\s,\/]', line) if x != '']
for s in line:
if '=' in s:
s = s.split('=')
keyword = s.pop(0)
options = s.pop(0)
params.update({keyword.lower(): options.lower()})
else:
if len(s) > 0:
params.update({s.lower(): None})
return params
def _get_route_params(line):
'''Reads keywords and values from a line in
a Gaussian input file's route section,
and returns them as a dictionary'''
method_basis_match = _re_method_basis.match(line)
if method_basis_match:
params = {}
ase_gen_comment = '! ASE formatted method and basis'
if method_basis_match.group(5) == ase_gen_comment:
params['method'] = method_basis_match.group(1).strip().lower()
params['basis'] = method_basis_match.group(2).strip().lower()
if method_basis_match.group(4):
params['fitting_basis'] = method_basis_match.group(
4).strip().lower()
return params
return _get_key_value_pairs(line)
def _get_all_route_params(route_section):
''' Given a string: route_section which contains the route
section of a gaussian input file, returns a dictionary of
keywords and values'''
parameters = {}
for line in route_section:
output_type_match = _re_output_type.match(line)
if not parameters.get('output_type') and output_type_match:
line = line.strip(output_type_match.group(0))
parameters.update(
{'output_type': output_type_match.group(1).lower()})
# read route section
route_params = _get_route_params(line)
if route_params is not None:
parameters.update(route_params)
return parameters
def _get_charge_mult(chgmult_section):
'''return a dict with the charge and multiplicity from
a list chgmult_section that contains the charge and multiplicity
line, read from a gaussian input file'''
chgmult_match = _re_chgmult.match(str(chgmult_section))
try:
chgmult = chgmult_match.group(0).split()
return {'charge': int(chgmult[0]), 'mult': int(chgmult[1])}
except (IndexError, AttributeError):
raise ParseError("ERROR: Could not read the charge and multiplicity "
"from the Gaussian input file. These must be 2 "
"integers separated with whitespace or a comma.")
def _get_nuclear_props(line):
''' Reads any info in parantheses in the line and returns
a dictionary of the nuclear properties.'''
nuclear_props_match = _re_nuclear_props.search(line)
nuclear_props = {}
if nuclear_props_match:
nuclear_props = _get_key_value_pairs(nuclear_props_match.group(1))
updated_nuclear_props = {}
for key, value in nuclear_props.items():
if value.isnumeric():
value = int(value)
else:
value = float(value)
if key not in _nuclear_prop_names:
if "fragment" in key:
warnings.warn("Fragments are not "
"currently supported.")
warnings.warn("The following nuclear properties "
"could not be saved: {}".format(
{key: value}))
else:
updated_nuclear_props[key] = value
nuclear_props = updated_nuclear_props
for k in _nuclear_prop_names:
if k not in nuclear_props:
nuclear_props[k] = None
return nuclear_props
def _get_atoms_info(line):
'''Returns the symbol and position of an atom from a line
in the molecule specification section'''
nuclear_props_match = _re_nuclear_props.search(line)
if nuclear_props_match:
line = line.replace(nuclear_props_match.group(0), '')
tokens = line.split()
symbol = _convert_to_symbol(tokens[0])
pos = list(tokens[1:])
return symbol, pos
def _get_cartesian_atom_coords(symbol, pos):
'''Returns the coordinates: pos as a list of floats if they
are cartesian, and not in z-matrix format'''
if len(pos) < 3 or (pos[0] == '0' and symbol != 'TV'):
# In this case, we have a z-matrix definition, so
# no cartesian coords.
return
elif len(pos) > 3:
raise ParseError("ERROR: Gaussian input file could "
"not be read as freeze codes are not"
" supported. If using cartesian "
"coordinates, these must be "
"given as 3 numbers separated "
"by whitespace.")
else:
try:
return list(map(float, pos))
except ValueError:
raise(ParseError(
"ERROR: Molecule specification in"
"Gaussian input file could not be read"))
def _get_zmatrix_line(line):
''' Converts line into the format needed for it to
be added to the z-matrix contents '''
line_list = line.split()
if len(line_list) == 8 and line_list[7] == '1':
raise ParseError(
"ERROR: Could not read the Gaussian input file"
", as the alternative Z-matrix format using "
"two bond angles instead of a bond angle and "
"a dihedral angle is not supported.")
return(line.strip() + '\n')
def _read_zmatrix(zmatrix_contents, zmatrix_vars=None):
''' Reads a z-matrix (zmatrix_contents) using its list of variables
(zmatrix_vars), and returns atom positions and symbols '''
try:
atoms = parse_zmatrix(zmatrix_contents, defs=zmatrix_vars)
except (ValueError, AssertionError) as e:
raise ParseError("Failed to read Z-matrix from "
"Gaussian input file: ", e)
except KeyError as e:
raise ParseError("Failed to read Z-matrix from "
"Gaussian input file, as symbol: {}"
"could not be recognised. Please make "
"sure you use element symbols, not "
"atomic numbers in the element labels.".format(e))
positions = atoms.positions
symbols = atoms.get_chemical_symbols()
return positions, symbols
def _get_nuclear_props_for_all_atoms(nuclear_props):
''' Returns the nuclear properties for all atoms as a dictionary,
in the format needed for it to be added to the parameters dictionary.'''
params = {k + 'list': [] for k in _nuclear_prop_names}
for dictionary in nuclear_props:
for key, value in dictionary.items():
params[key + 'list'].append(value)
for key, array in params.items():
values_set = False
for value in array:
if value is not None:
values_set = True
if not values_set:
params[key] = None
return params
def _get_atoms_from_molspec(molspec_section):
''' Takes a string: molspec_section which contains the molecule
specification section of a gaussian input file, and returns an atoms
object that represents this.'''
# These will contain info that will be attached to the Atoms object:
symbols = []
positions = []
pbc = np.zeros(3, dtype=bool)
cell = np.zeros((3, 3))
npbc = 0
# Will contain a dictionary of nuclear properties for each atom,
# that will later be saved to the parameters dict:
nuclear_props = []
# Info relating to the z-matrix definition (if set)
zmatrix_type = False
zmatrix_contents = ""
zmatrix_var_section = False
zmatrix_vars = ""
for line in molspec_section:
# Remove any comments and replace '/' and ',' with whitespace,
# as these are equivalent:
line = line.split('!')[0].replace('/', ' ').replace(',', ' ')
if (line.split()):
if zmatrix_type:
# Save any variables set when defining the z-matrix:
if zmatrix_var_section:
zmatrix_vars += line.strip() + '\n'
continue
elif 'variables' in line.lower():
zmatrix_var_section = True
continue
elif 'constants' in line.lower():
zmatrix_var_section = True
warnings.warn("Constants in the optimisation are "
"not currently supported. Instead "
"setting constants as variables.")
continue
symbol, pos = _get_atoms_info(line)
current_nuclear_props = _get_nuclear_props(line)
if not zmatrix_type:
pos = _get_cartesian_atom_coords(symbol, pos)
if pos is None:
zmatrix_type = True
if symbol.upper() == 'TV' and pos is not None:
pbc[npbc] = True
cell[npbc] = pos
npbc += 1
else:
nuclear_props.append(current_nuclear_props)
if not zmatrix_type:
symbols.append(symbol)
positions.append(pos)
if zmatrix_type:
zmatrix_contents += _get_zmatrix_line(line)
# Now that we are past the molecule spec. section, we can read
# the entire z-matrix (if set):
if len(positions) == 0:
if zmatrix_type:
if zmatrix_vars == '':
zmatrix_vars = None
positions, symbols = _read_zmatrix(
zmatrix_contents, zmatrix_vars)
try:
atoms = Atoms(symbols, positions, pbc=pbc, cell=cell)
except (IndexError, ValueError, KeyError) as e:
raise ParseError("ERROR: Could not read the Gaussian input file, "
"due to a problem with the molecule "
"specification: {}".format(e))
nuclear_props = _get_nuclear_props_for_all_atoms(nuclear_props)
return atoms, nuclear_props
def _get_readiso_param(parameters):
''' Returns a tuple containing the frequency
keyword and its options, if the frequency keyword is
present in parameters and ReadIso is one of its options'''
freq_options = parameters.get('freq', None)
if freq_options:
freq_name = 'freq'
else:
freq_options = parameters.get('frequency', None)
freq_name = 'frequency'
if freq_options is not None:
if ('readiso' or 'readisotopes') in freq_options:
return freq_name, freq_options
return None, None
def _get_readiso_info(line, parameters):
'''Reads the temperature, pressure and scale from the first line
of a ReadIso section of a Gaussian input file. Returns these in
a dictionary.'''
readiso_params = {}
if _get_readiso_param(parameters)[0] is not None:
# when count_iso is 0 we are in the line where
# temperature, pressure, [scale] is saved
line = line.replace(
'[', '').replace(']', '')
tokens = line.strip().split()
try:
readiso_params['temperature'] = tokens[0]
readiso_params['pressure'] = tokens[1]
readiso_params['scale'] = tokens[2]
except IndexError:
pass
if readiso_params != {}:
return readiso_params
def _delete_readiso_param(parameters):
'''Removes the readiso parameter from the parameters dict'''
parameters = deepcopy(parameters)
freq_name, freq_options = _get_readiso_param(parameters)
if freq_name is not None:
if 'readisotopes' in freq_options:
iso_name = 'readisotopes'
else:
iso_name = 'readiso'
freq_options = [v.group() for v in re.finditer(
r'[^\,/\s]+', freq_options)]
freq_options.remove(iso_name)
new_freq_options = ''
for v in freq_options:
new_freq_options += v + ' '
if new_freq_options == '':
new_freq_options = None
else:
new_freq_options = new_freq_options.strip()
parameters[freq_name] = new_freq_options
return parameters
def _update_readiso_params(parameters, symbols):
''' Deletes the ReadIso option from the route section as we
write out the masses in the nuclear properties section
instead of the ReadIso section.
Ensures the masses array is the same length as the
symbols array. This is necessary due to the way the
ReadIso section is defined:
The mass of each atom is listed on a separate line, in
order of appearance in the molecule spec. A blank line
indicates not to modify the mass for that atom.
But you do not have to leave blank lines equal to the
remaining atoms after you finsihed setting masses.
E.g. if you had 10 masses and only want to set the mass
for the first atom, you don't have to leave 9 blank lines
after it.
'''
parameters = _delete_readiso_param(parameters)
if parameters.get('isolist') is not None:
if len(parameters['isolist']) < len(symbols):
for i in range(0, len(symbols) - len(parameters['isolist'])):
parameters['isolist'].append(None)
if all(m is None for m in parameters['isolist']):
parameters['isolist'] = None
return parameters
def _validate_params(parameters):
'''Checks whether all of the required parameters exist in the
parameters dict and whether it contains any unsupported settings
'''
# Check for unsupported settings
unsupported_settings = {
"z-matrix", "modredun", "modredundant", "addredundant", "addredun",
"readopt", "rdopt"}
for s in unsupported_settings:
for v in parameters.values():
if v is not None and s in str(v):
raise ParseError(
"ERROR: Could not read the Gaussian input file"
", as the option: {} is currently unsupported."
.format(s))
for k in list(parameters.keys()):
if "popt" in k:
parameters["opt"] = parameters.pop(k)
warnings.warn("The option {} is currently unsupported. "
"This has been replaced with {}."
.format("POpt", "opt"))
return
def _get_extra_section_params(extra_section, parameters, atoms):
''' Takes a list of strings: extra_section, which contains
the 'extra' lines in a gaussian input file. Also takes the parameters
that have been read so far, and the atoms that have been read from the
file.
Returns an updated version of the parameters dict, containing details from
this extra section. This may include the basis set definition or filename,
and/or the readiso section.'''
new_parameters = deepcopy(parameters)
# Will store the basis set definition (if set):
basis_set = ""
# This will indicate whether we have a readiso section:
readiso = _get_readiso_param(new_parameters)[0]
# This will indicate which line of the readiso section we are reading:
count_iso = 0
readiso_masses = []
for line in extra_section:
if line.split():
# check that the line isn't just a comment
if line.split()[0] == '!':
continue
line = line.strip().split('!')[0]
if len(line) > 0 and line[0] == '@':
# If the name of a basis file is specified, this line
# begins with a '@'
new_parameters['basisfile'] = line
elif readiso and count_iso < len(atoms.symbols) + 1:
# The ReadIso section has 1 more line than the number of
# symbols
if count_iso == 0 and line != '\n':
# The first line in the readiso section contains the
# temperature, pressure, scale. Here we save this:
readiso_info = _get_readiso_info(line, new_parameters)
if readiso_info is not None:
new_parameters.update(readiso_info)
# If the atom masses were set in the nuclear properties
# section, they will be overwritten by the ReadIso
# section
readiso_masses = []
count_iso += 1
elif count_iso > 0:
# The remaining lines in the ReadIso section are
# the masses of the atoms
try:
readiso_masses.append(float(line))
except ValueError:
readiso_masses.append(None)
count_iso += 1
else:
# If the rest of the file is not the ReadIso section,
# then it must be the definition of the basis set.
if new_parameters.get('basis', '') == 'gen' \
or 'gen' in new_parameters:
if line.strip() != '':
basis_set += line + '\n'
if readiso:
new_parameters['isolist'] = readiso_masses
new_parameters = _update_readiso_params(new_parameters, atoms.symbols)
# Saves the basis set definition to the parameters array if
# it has been set:
if basis_set != '':
new_parameters['basis_set'] = basis_set
new_parameters['basis'] = 'gen'
new_parameters.pop('gen', None)
return new_parameters
def _get_gaussian_in_sections(fd):
''' Reads a gaussian input file and returns
a dictionary of the sections of the file - each dictionary
value is a list of strings - each string is a line in that
section. '''
# These variables indicate which section of the
# input file is currently being read:
route_section = False
atoms_section = False
atoms_saved = False
# Here we will store the sections of the file in a dictionary,
# as lists of strings
gaussian_sections = {'link0': [], 'route': [],
'charge_mult': [], 'mol_spec': [], 'extra': []}
for line in fd:
line = line.strip(' ')
link0_match = _re_link0.match(line)
output_type_match = _re_output_type.match(line)
chgmult_match = _re_chgmult.match(line)
if link0_match:
gaussian_sections['link0'].append(line)
# The first blank line appears at the end of the route section
# and a blank line appears at the end of the atoms section:
elif line == '\n' and (route_section or atoms_section):
route_section = False
atoms_section = False
elif output_type_match or route_section:
route_section = True
gaussian_sections['route'].append(line)
elif chgmult_match:
gaussian_sections['charge_mult'] = line
# After the charge and multiplicty have been set, the
# molecule specification section of the input file begins:
atoms_section = True
elif atoms_section:
gaussian_sections['mol_spec'].append(line)
atoms_saved = True
elif atoms_saved:
# Next we read the other sections below the molecule spec.
# This may include the ReadIso section and the basis set
# definition or filename
gaussian_sections['extra'].append(line)
return gaussian_sections
class GaussianConfiguration:
def __init__(self, atoms, parameters):
self.atoms = atoms.copy()
self.parameters = deepcopy(parameters)
def get_atoms(self):
return self.atoms
def get_parameters(self):
return self.parameters
def get_calculator(self):
# Explicitly set parameters that must for security reasons not be
# taken from file:
calc = Gaussian(atoms=self.atoms, command=None, restart=None,
ignore_bad_restart_file=Calculator._deprecated,
label='Gaussian', directory='.', **self.parameters)
return calc
@ staticmethod
def parse_gaussian_input(fd):
'''Reads a gaussian input file into an atoms object and
parameters dictionary.
Parameters
----------
fd: file-like
Contains the contents of a gaussian input file
Returns
---------
GaussianConfiguration
Contains an atoms object created using the structural
information from the input file.
Contains a parameters dictionary, which stores any
keywords and options found in the link-0 and route
sections of the input file.
'''
# The parameters dict to attach to the calculator
parameters = {}
file_sections = _get_gaussian_in_sections(fd)
# Update the parameters dictionary with the keywords and values
# from each section of the input file:
parameters.update(_get_all_link0_params(file_sections['link0']))
parameters.update(_get_all_route_params(file_sections['route']))
parameters.update(_get_charge_mult(file_sections['charge_mult']))
atoms, nuclear_props = _get_atoms_from_molspec(
file_sections['mol_spec'])
parameters.update(nuclear_props)
parameters.update(_get_extra_section_params(
file_sections['extra'], parameters, atoms))
_validate_params(parameters)
return GaussianConfiguration(atoms, parameters)
[docs]def read_gaussian_in(fd, attach_calculator=False):
'''
Reads a gaussian input file and returns an Atoms object.
Parameters
----------
fd: file-like
Contains the contents of a gaussian input file
attach_calculator: bool
When set to ``True``, a Gaussian calculator will be
attached to the Atoms object which is returned.
This will mean that additional information is read
from the input file (see below for details).
Returns
----------
Atoms
An Atoms object containing the following information that has been
read from the input file: symbols, positions, cell.
Notes
----------
Gaussian input files can be read where the atoms' locations are set with
cartesian coordinates or as a z-matrix. Variables may be used in the
z-matrix definition, but currently setting constants for constraining
a geometry optimisation is not supported. Note that the `alternative`
z-matrix definition where two bond angles are set instead of a bond angle
and a dihedral angle is not currently supported.
If the parameter ``attach_calculator`` is set to ``True``, then the Atoms
object is returned with a Gaussian calculator attached.
This Gaussian calculator will contain a parameters dictionary which will
contain the Link 0 commands and the options and keywords set in the route
section of the Gaussian input file, as well as:
• The charge and multiplicity
• The selected level of output
• The method, basis set and (optional) fitting basis set.
• Basis file name/definition if set
• Nuclear properties
• Masses set in the nuclear properties section or in the ReadIsotopes
section (if ``freq=ReadIso`` is set). These will be saved in an array
with keyword ``isolist``, in the parameters dictionary. For these to
actually be used in calculations and/or written out to input files,
the Atoms object's masses must be manually updated to these values
(this is not done automatically)
If the Gaussian input file has been generated by ASE's
``write_gaussian_in`` method, then the basis set, method and fitting
basis will be saved under the ``basis``, ``method`` and ``fitting_basis``
keywords in the parameters dictionary. Otherwise they are saved as
keywords in the parameters dict.
Currently this does not support reading of any other sections which would
be found below the molecule specification that have not been mentioned
here (such as the ModRedundant section).
'''
gaussian_input = GaussianConfiguration.parse_gaussian_input(fd)
atoms = gaussian_input.get_atoms()
if attach_calculator:
atoms.calc = gaussian_input.get_calculator()
return atoms
# In the interest of using the same RE for both atomic positions and forces,
# we make one of the columns optional. That's because atomic positions have
# 6 columns, while forces only has 5 columns. Otherwise they are very similar.
_re_atom = re.compile(
r'^\s*\S+\s+(\S+)\s+(?:\S+\s+)?(\S+)\s+(\S+)\s+(\S+)\s*$'
)
_re_forceblock = re.compile(r'^\s*Center\s+Atomic\s+Forces\s+\S+\s*$')
_re_l716 = re.compile(r'^\s*\(Enter .+l716.exe\)$')
def _compare_merge_configs(configs, new):
"""Append new to configs if it contains a new geometry or new data.
Gaussian sometimes repeats a geometry, for example at the end of an
optimization, or when a user requests vibrational frequency
analysis in the same calculation as a geometry optimization.
In those cases, rather than repeating the structure in the list of
returned structures, try to merge results if doing so doesn't change
any previously calculated values. If that's not possible, then create
a new "image" with the new results.
"""
if not configs:
configs.append(new)
return
old = configs[-1]
if old != new:
configs.append(new)
return
oldres = old.calc.results
newres = new.calc.results
common_keys = set(oldres).intersection(newres)
for key in common_keys:
if np.any(oldres[key] != newres[key]):
configs.append(new)
return
else:
oldres.update(newres)
[docs]def read_gaussian_out(fd, index=-1):
configs = []
atoms = None
energy = None
dipole = None
forces = None
for line in fd:
line = line.strip()
if line.startswith(r'1\1\GINC'):
# We've reached the "archive" block at the bottom, stop parsing
break
if (line == 'Input orientation:'
or line == 'Z-Matrix orientation:'):
if atoms is not None:
atoms.calc = SinglePointCalculator(
atoms, energy=energy, dipole=dipole, forces=forces,
)
_compare_merge_configs(configs, atoms)
atoms = None
energy = None
dipole = None
forces = None
numbers = []
positions = []
pbc = np.zeros(3, dtype=bool)
cell = np.zeros((3, 3))
npbc = 0
# skip 4 irrelevant lines
for _ in range(4):
fd.readline()
while True:
match = _re_atom.match(fd.readline())
if match is None:
break
number = int(match.group(1))
pos = list(map(float, match.group(2, 3, 4)))
if number == -2:
pbc[npbc] = True
cell[npbc] = pos
npbc += 1
else:
numbers.append(max(number, 0))
positions.append(pos)
atoms = Atoms(numbers, positions, pbc=pbc, cell=cell)
elif (line.startswith('Energy=')
or line.startswith('SCF Done:')):
# Some semi-empirical methods (Huckel, MINDO3, etc.),
# or SCF methods (HF, DFT, etc.)
energy = float(line.split('=')[1].split()[0].replace('D', 'e'))
energy *= Hartree
elif (line.startswith('E2 =') or line.startswith('E3 =')
or line.startswith('E4(') or line.startswith('DEMP5 =')
or line.startswith('E2(')):
# MP{2,3,4,5} energy
# also some double hybrid calculations, like B2PLYP
energy = float(line.split('=')[-1].strip().replace('D', 'e'))
energy *= Hartree
elif line.startswith('Wavefunction amplitudes converged. E(Corr)'):
# "correlated method" energy, e.g. CCSD
energy = float(line.split('=')[-1].strip().replace('D', 'e'))
energy *= Hartree
elif _re_l716.match(line):
# Sometimes Gaussian will print "Rotating derivatives to
# standard orientation" after the matched line (which looks like
# "(Enter /opt/gaussian/g16/l716.exe)", though the exact path
# depends on where Gaussian is installed). We *skip* the dipole
# in this case, because it might be rotated relative to the input
# orientation (and also it is numerically different even if the
# standard orientation is the same as the input orientation).
line = fd.readline().strip()
if not line.startswith('Dipole'):
continue
dip = line.split('=')[1].replace('D', 'e')
tokens = dip.split()
dipole = []
# dipole elements can run together, depending on what method was
# used to calculate them. First see if there is a space between
# values.
if len(tokens) == 3:
dipole = list(map(float, tokens))
elif len(dip) % 3 == 0:
# next, check if the number of tokens is divisible by 3
nchars = len(dip) // 3
for i in range(3):
dipole.append(float(dip[nchars * i:nchars * (i + 1)]))
else:
# otherwise, just give up on trying to parse it.
dipole = None
continue
# this dipole moment is printed in atomic units, e-Bohr
# ASE uses e-Angstrom for dipole moments.
dipole = np.array(dipole) * Bohr
elif _re_forceblock.match(line):
# skip 2 irrelevant lines
fd.readline()
fd.readline()
forces = []
while True:
match = _re_atom.match(fd.readline())
if match is None:
break
forces.append(list(map(float, match.group(2, 3, 4))))
forces = np.array(forces) * Hartree / Bohr
if atoms is not None:
atoms.calc = SinglePointCalculator(
atoms, energy=energy, dipole=dipole, forces=forces,
)
_compare_merge_configs(configs, atoms)
return configs[index]