Source code for ase.geometry.cell

# Copyright (C) 2010, Jesper Friis
# (see accompanying license files for details).

# XXX bravais objects need to hold tolerance eps, *or* temember variant
# from the beginning.
#
# Should they hold a 'cycle' argument or other data to reconstruct a particular
# cell?  (E.g. rotation, niggli transform)
#
# Implement total ordering of Bravais classes 1-14

import numpy as np
from numpy import pi, sin, cos, arccos, sqrt, dot
from numpy.linalg import norm


def unit_vector(x):
    """Return a unit vector in the same direction as x."""
    y = np.array(x, dtype='float')
    return y / norm(y)


def angle(x, y):
    """Return the angle between vectors a and b in degrees."""
    return arccos(dot(x, y) / (norm(x) * norm(y))) * 180. / pi


[docs]def cell_to_cellpar(cell, radians=False): """Returns the cell parameters [a, b, c, alpha, beta, gamma]. Angles are in degrees unless radian=True is used. """ lengths = [np.linalg.norm(v) for v in cell] angles = [] for i in range(3): j = i - 1 k = i - 2 ll = lengths[j] * lengths[k] if ll > 1e-16: x = np.dot(cell[j], cell[k]) / ll angle = 180.0 / pi * arccos(x) else: angle = 90.0 angles.append(angle) if radians: angles = [angle * pi / 180 for angle in angles] return np.array(lengths + angles)
[docs]def cellpar_to_cell(cellpar, ab_normal=(0, 0, 1), a_direction=None): """Return a 3x3 cell matrix from cellpar=[a,b,c,alpha,beta,gamma]. Angles must be in degrees. The returned cell is orientated such that a and b are normal to `ab_normal` and a is parallel to the projection of `a_direction` in the a-b plane. Default `a_direction` is (1,0,0), unless this is parallel to `ab_normal`, in which case default `a_direction` is (0,0,1). The returned cell has the vectors va, vb and vc along the rows. The cell will be oriented such that va and vb are normal to `ab_normal` and va will be along the projection of `a_direction` onto the a-b plane. Example: >>> cell = cellpar_to_cell([1, 2, 4, 10, 20, 30], (0, 1, 1), (1, 2, 3)) >>> np.round(cell, 3) array([[ 0.816, -0.408, 0.408], [ 1.992, -0.13 , 0.13 ], [ 3.859, -0.745, 0.745]]) """ if a_direction is None: if np.linalg.norm(np.cross(ab_normal, (1, 0, 0))) < 1e-5: a_direction = (0, 0, 1) else: a_direction = (1, 0, 0) # Define rotated X,Y,Z-system, with Z along ab_normal and X along # the projection of a_direction onto the normal plane of Z. ad = np.array(a_direction) Z = unit_vector(ab_normal) X = unit_vector(ad - dot(ad, Z) * Z) Y = np.cross(Z, X) # Express va, vb and vc in the X,Y,Z-system alpha, beta, gamma = 90., 90., 90. if isinstance(cellpar, (int, float)): a = b = c = cellpar elif len(cellpar) == 1: a = b = c = cellpar[0] elif len(cellpar) == 3: a, b, c = cellpar else: a, b, c, alpha, beta, gamma = cellpar # Handle orthorhombic cells separately to avoid rounding errors eps = 2 * np.spacing(90.0, dtype=np.float64) # around 1.4e-14 # alpha if abs(abs(alpha) - 90) < eps: cos_alpha = 0.0 else: cos_alpha = cos(alpha * pi / 180.0) # beta if abs(abs(beta) - 90) < eps: cos_beta = 0.0 else: cos_beta = cos(beta * pi / 180.0) # gamma if abs(gamma - 90) < eps: cos_gamma = 0.0 sin_gamma = 1.0 elif abs(gamma + 90) < eps: cos_gamma = 0.0 sin_gamma = -1.0 else: cos_gamma = cos(gamma * pi / 180.0) sin_gamma = sin(gamma * pi / 180.0) # Build the cell vectors va = a * np.array([1, 0, 0]) vb = b * np.array([cos_gamma, sin_gamma, 0]) cx = cos_beta cy = (cos_alpha - cos_beta * cos_gamma) / sin_gamma cz_sqr = 1. - cx * cx - cy * cy assert cz_sqr >= 0 cz = sqrt(cz_sqr) vc = c * np.array([cx, cy, cz]) # Convert to the Cartesian x,y,z-system abc = np.vstack((va, vb, vc)) T = np.vstack((X, Y, Z)) cell = dot(abc, T) return cell
def metric_from_cell(cell): """Calculates the metric matrix from cell, which is given in the Cartesian system.""" cell = np.asarray(cell, dtype=float) return np.dot(cell, cell.T)
[docs]def complete_cell(cell): """Calculate complete cell with missing lattice vectors. Returns a new 3x3 ndarray. """ cell = np.array(cell, dtype=float) missing = np.nonzero(~cell.any(axis=1))[0] if len(missing) == 3: cell.flat[::4] = 1.0 if len(missing) == 2: # Must decide two vectors: V, s, WT = np.linalg.svd(cell.T) sf = [s[0], 1, 1] cell = (V @ np.diag(sf) @ WT).T if np.sign(np.linalg.det(cell)) < 0: cell[missing[0]] = -cell[missing[0]] elif len(missing) == 1: i = missing[0] cell[i] = np.cross(cell[i - 2], cell[i - 1]) cell[i] /= np.linalg.norm(cell[i]) return cell
[docs]def is_orthorhombic(cell): """Check that cell only has stuff in the diagonal.""" return not (np.flatnonzero(cell) % 4).any()
[docs]def orthorhombic(cell): """Return cell as three box dimensions or raise ValueError.""" if not is_orthorhombic(cell): raise ValueError('Not orthorhombic') return cell.diagonal().copy()
# We make the Cell object available for import from here for compatibility from ase.cell import Cell # noqa