"""A collection of mutations that can be used."""
import numpy as np
from math import cos, sin, pi
from ase.calculators.lammpslib import convert_cell
from ase.ga.utilities import (atoms_too_close,
atoms_too_close_two_sets,
gather_atoms_by_tag,
get_rotation_matrix)
from ase.ga.offspring_creator import OffspringCreator, CombinationMutation
from ase import Atoms
class RattleMutation(OffspringCreator):
"""An implementation of the rattle mutation as described in:
R.L. Johnston Dalton Transactions, Vol. 22,
No. 22. (2003), pp. 4193-4207
Parameters:
blmin: Dictionary defining the minimum distance between atoms
after the rattle.
n_top: Number of atoms optimized by the GA.
rattle_strength: Strength with which the atoms are moved.
rattle_prop: The probability with which each atom is rattled.
test_dist_to_slab: whether to also make sure that the distances
between the atoms and the slab satisfy the blmin.
use_tags: if True, the atomic tags will be used to preserve
molecular identity. Same-tag atoms will then be
displaced collectively, so that the internal
geometry is preserved.
rng: Random number generator
By default numpy.random.
"""
def __init__(self, blmin, n_top, rattle_strength=0.8,
rattle_prop=0.4, test_dist_to_slab=True, use_tags=False,
verbose=False, rng=np.random):
OffspringCreator.__init__(self, verbose, rng=rng)
self.blmin = blmin
self.n_top = n_top
self.rattle_strength = rattle_strength
self.rattle_prop = rattle_prop
self.test_dist_to_slab = test_dist_to_slab
self.use_tags = use_tags
self.descriptor = 'RattleMutation'
self.min_inputs = 1
def get_new_individual(self, parents):
f = parents[0]
indi = self.mutate(f)
if indi is None:
return indi, 'mutation: rattle'
indi = self.initialize_individual(f, indi)
indi.info['data']['parents'] = [f.info['confid']]
return self.finalize_individual(indi), 'mutation: rattle'
def mutate(self, atoms):
"""Does the actual mutation."""
N = len(atoms) if self.n_top is None else self.n_top
slab = atoms[:len(atoms) - N]
atoms = atoms[-N:]
tags = atoms.get_tags() if self.use_tags else np.arange(N)
pos_ref = atoms.get_positions()
num = atoms.get_atomic_numbers()
cell = atoms.get_cell()
pbc = atoms.get_pbc()
st = 2. * self.rattle_strength
count = 0
maxcount = 1000
too_close = True
while too_close and count < maxcount:
count += 1
pos = pos_ref.copy()
ok = False
for tag in np.unique(tags):
select = np.where(tags == tag)
if self.rng.rand() < self.rattle_prop:
ok = True
r = self.rng.rand(3)
pos[select] += st * (r - 0.5)
if not ok:
# Nothing got rattled
continue
top = Atoms(num, positions=pos, cell=cell, pbc=pbc, tags=tags)
too_close = atoms_too_close(
top, self.blmin, use_tags=self.use_tags)
if not too_close and self.test_dist_to_slab:
too_close = atoms_too_close_two_sets(top, slab, self.blmin)
if count == maxcount:
return None
mutant = slab + top
return mutant
class PermutationMutation(OffspringCreator):
"""Mutation that permutes a percentage of the atom types in the cluster.
Parameters:
n_top: Number of atoms optimized by the GA.
probability: The probability with which an atom is permuted.
test_dist_to_slab: whether to also make sure that the distances
between the atoms and the slab satisfy the blmin.
use_tags: if True, the atomic tags will be used to preserve
molecular identity. Permutations will then happen
at the molecular level, i.e. swapping the center-of-
positions of two moieties while preserving their
internal geometries.
blmin: Dictionary defining the minimum distance between atoms
after the permutation. If equal to None (the default),
no such check is performed.
rng: Random number generator
By default numpy.random.
"""
def __init__(self, n_top, probability=0.33, test_dist_to_slab=True,
use_tags=False, blmin=None, rng=np.random, verbose=False):
OffspringCreator.__init__(self, verbose, rng=rng)
self.n_top = n_top
self.probability = probability
self.test_dist_to_slab = test_dist_to_slab
self.use_tags = use_tags
self.blmin = blmin
self.descriptor = 'PermutationMutation'
self.min_inputs = 1
def get_new_individual(self, parents):
f = parents[0]
indi = self.mutate(f)
if indi is None:
return indi, 'mutation: permutation'
indi = self.initialize_individual(f, indi)
indi.info['data']['parents'] = [f.info['confid']]
return self.finalize_individual(indi), 'mutation: permutation'
def mutate(self, atoms):
"""Does the actual mutation."""
N = len(atoms) if self.n_top is None else self.n_top
slab = atoms[:len(atoms) - N]
atoms = atoms[-N:]
if self.use_tags:
gather_atoms_by_tag(atoms)
tags = atoms.get_tags() if self.use_tags else np.arange(N)
pos_ref = atoms.get_positions()
num = atoms.get_atomic_numbers()
cell = atoms.get_cell()
pbc = atoms.get_pbc()
symbols = atoms.get_chemical_symbols()
unique_tags = np.unique(tags)
n = len(unique_tags)
swaps = int(np.ceil(n * self.probability / 2.))
sym = []
for tag in unique_tags:
indices = np.where(tags == tag)[0]
s = ''.join([symbols[j] for j in indices])
sym.append(s)
assert len(np.unique(sym)) > 1, \
'Permutations with one atom (or molecule) type is not valid'
count = 0
maxcount = 1000
too_close = True
while too_close and count < maxcount:
count += 1
pos = pos_ref.copy()
for _ in range(swaps):
i = j = 0
while sym[i] == sym[j]:
i = self.rng.randint(0, high=n)
j = self.rng.randint(0, high=n)
ind1 = np.where(tags == i)
ind2 = np.where(tags == j)
cop1 = np.mean(pos[ind1], axis=0)
cop2 = np.mean(pos[ind2], axis=0)
pos[ind1] += cop2 - cop1
pos[ind2] += cop1 - cop2
top = Atoms(num, positions=pos, cell=cell, pbc=pbc, tags=tags)
if self.blmin is None:
too_close = False
else:
too_close = atoms_too_close(
top, self.blmin, use_tags=self.use_tags)
if not too_close and self.test_dist_to_slab:
too_close = atoms_too_close_two_sets(top, slab, self.blmin)
if count == maxcount:
return None
mutant = slab + top
return mutant
class MirrorMutation(OffspringCreator):
"""A mirror mutation, as described in
TO BE PUBLISHED.
This mutation mirrors half of the cluster in a
randomly oriented cutting plane discarding the other half.
Parameters:
blmin: Dictionary defining the minimum allowed
distance between atoms.
n_top: Number of atoms the GA optimizes.
reflect: Defines if the mirrored half is also reflected
perpendicular to the mirroring plane.
rng: Random number generator
By default numpy.random.
"""
def __init__(self, blmin, n_top, reflect=False, rng=np.random,
verbose=False):
OffspringCreator.__init__(self, verbose, rng=rng)
self.blmin = blmin
self.n_top = n_top
self.reflect = reflect
self.descriptor = 'MirrorMutation'
self.min_inputs = 1
def get_new_individual(self, parents):
f = parents[0]
indi = self.mutate(f)
if indi is None:
return indi, 'mutation: mirror'
indi = self.initialize_individual(f, indi)
indi.info['data']['parents'] = [f.info['confid']]
return self.finalize_individual(indi), 'mutation: mirror'
def mutate(self, atoms):
""" Do the mutation of the atoms input. """
reflect = self.reflect
tc = True
slab = atoms[0:len(atoms) - self.n_top]
top = atoms[len(atoms) - self.n_top: len(atoms)]
num = top.numbers
unique_types = list(set(num))
nu = dict()
for u in unique_types:
nu[u] = sum(num == u)
n_tries = 1000
counter = 0
changed = False
while tc and counter < n_tries:
counter += 1
cand = top.copy()
pos = cand.get_positions()
cm = np.average(top.get_positions(), axis=0)
# first select a randomly oriented cutting plane
theta = pi * self.rng.rand()
phi = 2. * pi * self.rng.rand()
n = (cos(phi) * sin(theta), sin(phi) * sin(theta), cos(theta))
n = np.array(n)
# Calculate all atoms signed distance to the cutting plane
D = []
for (i, p) in enumerate(pos):
d = np.dot(p - cm, n)
D.append((i, d))
# Sort the atoms by their signed distance
D.sort(key=lambda x: x[1])
nu_taken = dict()
# Select half of the atoms needed for a full cluster
p_use = []
n_use = []
for (i, d) in D:
if num[i] not in nu_taken.keys():
nu_taken[num[i]] = 0
if nu_taken[num[i]] < nu[num[i]] / 2.:
p_use.append(pos[i])
n_use.append(num[i])
nu_taken[num[i]] += 1
# calculate the mirrored position and add these.
pn = []
for p in p_use:
pt = p - 2. * np.dot(p - cm, n) * n
if reflect:
pt = -pt + 2 * cm + 2 * n * np.dot(pt - cm, n)
pn.append(pt)
n_use.extend(n_use)
p_use.extend(pn)
# In the case of an uneven number of
# atoms we need to add one extra
for n in nu.keys():
if nu[n] % 2 == 0:
continue
while sum(n_use == n) > nu[n]:
for i in range(int(len(n_use) / 2), len(n_use)):
if n_use[i] == n:
del p_use[i]
del n_use[i]
break
assert sum(n_use == n) == nu[n]
# Make sure we have the correct number of atoms
# and rearrange the atoms so they are in the right order
for i in range(len(n_use)):
if num[i] == n_use[i]:
continue
for j in range(i + 1, len(n_use)):
if n_use[j] == num[i]:
tn = n_use[i]
tp = p_use[i]
n_use[i] = n_use[j]
p_use[i] = p_use[j]
p_use[j] = tp
n_use[j] = tn
# Finally we check that nothing is too close in the end product.
cand = Atoms(num, p_use, cell=slab.get_cell(), pbc=slab.get_pbc())
tc = atoms_too_close(cand, self.blmin)
if tc:
continue
tc = atoms_too_close_two_sets(slab, cand, self.blmin)
if not changed and counter > n_tries // 2:
reflect = not reflect
changed = True
tot = slab + cand
if counter == n_tries:
return None
return tot
[docs]class StrainMutation(OffspringCreator):
""" Mutates a candidate by applying a randomly generated strain.
For more information, see also:
* `Glass, Oganov, Hansen, Comp. Phys. Comm. 175 (2006) 713-720`__
__ https://doi.org/10.1016/j.cpc.2006.07.020
* `Lonie, Zurek, Comp. Phys. Comm. 182 (2011) 372-387`__
__ https://doi.org/10.1016/j.cpc.2010.07.048
After initialization of the mutation, a scaling volume
(to which each mutated structure is scaled before checking the
constraints) is typically generated from the population,
which is then also occasionally updated in the course of the
GA run.
Parameters:
blmin: dict
The closest allowed interatomic distances on the form:
{(Z, Z*): dist, ...}, where Z and Z* are atomic numbers.
cellbounds: ase.ga.utilities.CellBounds instance
Describes limits on the cell shape, see
:class:`~ase.ga.utilities.CellBounds`.
stddev: float
Standard deviation used in the generation of the
strain matrix elements.
number_of_variable_cell_vectors: int (default 3)
The number of variable cell vectors (1, 2 or 3).
To keep things simple, it is the 'first' vectors which
will be treated as variable, i.e. the 'a' vector in the
univariate case, the 'a' and 'b' vectors in the bivariate
case, etc.
use_tags: boolean
Whether to use the atomic tags to preserve molecular identity.
rng: Random number generator
By default numpy.random.
"""
def __init__(self, blmin, cellbounds=None, stddev=0.7,
number_of_variable_cell_vectors=3, use_tags=False,
rng=np.random, verbose=False):
OffspringCreator.__init__(self, verbose, rng=rng)
self.blmin = blmin
self.cellbounds = cellbounds
self.stddev = stddev
self.number_of_variable_cell_vectors = number_of_variable_cell_vectors
self.use_tags = use_tags
self.scaling_volume = None
self.descriptor = 'StrainMutation'
self.min_inputs = 1
def update_scaling_volume(self, population, w_adapt=0.5, n_adapt=0):
"""Function to initialize or update the scaling volume in a GA run.
w_adapt: weight of the new vs the old scaling volume
n_adapt: number of best candidates in the population that
are used to calculate the new scaling volume
"""
if not n_adapt:
# if not set, take best 20% of the population
n_adapt = int(np.ceil(0.2 * len(population)))
v_new = np.mean([a.get_volume() for a in population[:n_adapt]])
if not self.scaling_volume:
self.scaling_volume = v_new
else:
volumes = [self.scaling_volume, v_new]
weights = [1 - w_adapt, w_adapt]
self.scaling_volume = np.average(volumes, weights=weights)
def get_new_individual(self, parents):
f = parents[0]
indi = self.mutate(f)
if indi is None:
return indi, 'mutation: strain'
indi = self.initialize_individual(f, indi)
indi.info['data']['parents'] = [f.info['confid']]
return self.finalize_individual(indi), 'mutation: strain'
def mutate(self, atoms):
""" Does the actual mutation. """
cell_ref = atoms.get_cell()
pos_ref = atoms.get_positions()
vol_ref = atoms.get_volume()
if self.use_tags:
tags = atoms.get_tags()
gather_atoms_by_tag(atoms)
pos = atoms.get_positions()
mutant = atoms.copy()
count = 0
too_close = True
maxcount = 1000
while too_close and count < maxcount:
count += 1
# generating the strain matrix:
strain = np.identity(3)
for i in range(self.number_of_variable_cell_vectors):
for j in range(i + 1):
r = self.rng.normal(loc=0., scale=self.stddev)
if i == j:
strain[i, j] += r
else:
epsilon = 0.5 * r
strain[i, j] += epsilon
strain[j, i] += epsilon
# applying the strain:
cell_new = np.dot(strain, cell_ref)
# convert to lower triangular form
cell_new = convert_cell(cell_new)[0].T
# volume scaling:
if self.number_of_variable_cell_vectors > 0:
volume = abs(np.linalg.det(cell_new))
if self.scaling_volume is None:
# The scaling_volume has not been set (yet),
# so we give it the same volume as the parent
scaling = vol_ref / volume
else:
scaling = self.scaling_volume / volume
scaling **= 1. / self.number_of_variable_cell_vectors
cell_new[:self.number_of_variable_cell_vectors] *= scaling
# check cell dimensions:
if not self.cellbounds.is_within_bounds(cell_new):
continue
# ensure non-variable cell vectors are indeed unchanged
for i in range(self.number_of_variable_cell_vectors, 3):
assert np.allclose(cell_new[i], cell_ref[i])
# apply the new unit cell and scale
# the atomic positions accordingly
mutant.set_cell(cell_ref, scale_atoms=False)
if self.use_tags:
transfo = np.linalg.solve(cell_ref, cell_new)
for tag in np.unique(tags):
select = np.where(tags == tag)
cop = np.mean(pos[select], axis=0)
disp = np.dot(cop, transfo) - cop
mutant.positions[select] += disp
else:
mutant.set_positions(pos_ref)
mutant.set_cell(cell_new, scale_atoms=not self.use_tags)
mutant.wrap()
# check the interatomic distances
too_close = atoms_too_close(mutant, self.blmin,
use_tags=self.use_tags)
if count == maxcount:
mutant = None
return mutant
[docs]class PermuStrainMutation(CombinationMutation):
"""Combination of PermutationMutation and StrainMutation.
For more information, see also:
* `Lonie, Zurek, Comp. Phys. Comm. 182 (2011) 372-387`__
__ https://doi.org/10.1016/j.cpc.2010.07.048
Parameters:
permutationmutation: OffspringCreator instance
A mutation that permutes atom types.
strainmutation: OffspringCreator instance
A mutation that mutates by straining.
"""
def __init__(self, permutationmutation, strainmutation, verbose=False):
super(PermuStrainMutation, self).__init__(permutationmutation,
strainmutation,
verbose=verbose)
self.descriptor = 'permustrain'
[docs]class RotationalMutation(OffspringCreator):
"""Mutates a candidate by applying random rotations
to multi-atom moieties in the structure (atoms with
the same tag are considered part of one such moiety).
Only performs whole-molecule rotations, no internal
rotations.
For more information, see also:
* `Zhu Q., Oganov A.R., Glass C.W., Stokes H.T,
Acta Cryst. (2012), B68, 215-226.`__
__ https://dx.doi.org/10.1107/S0108768112017466
Parameters:
blmin: dict
The closest allowed interatomic distances on the form:
{(Z, Z*): dist, ...}, where Z and Z* are atomic numbers.
n_top: int or None
The number of atoms to optimize (None = include all).
fraction: float
Fraction of the moieties to be rotated.
tags: None or list of integers
Specifies, respectively, whether all moieties or only those
with matching tags are eligible for rotation.
min_angle: float
Minimal angle (in radians) for each rotation;
should lie in the interval [0, pi].
test_dist_to_slab: boolean
Whether also the distances to the slab
should be checked to satisfy the blmin.
rng: Random number generator
By default numpy.random.
"""
def __init__(self, blmin, n_top=None, fraction=0.33, tags=None,
min_angle=1.57, test_dist_to_slab=True, rng=np.random,
verbose=False):
OffspringCreator.__init__(self, verbose, rng=rng)
self.blmin = blmin
self.n_top = n_top
self.fraction = fraction
self.tags = tags
self.min_angle = min_angle
self.test_dist_to_slab = test_dist_to_slab
self.descriptor = 'RotationalMutation'
self.min_inputs = 1
def get_new_individual(self, parents):
f = parents[0]
indi = self.mutate(f)
if indi is None:
return indi, 'mutation: rotational'
indi = self.initialize_individual(f, indi)
indi.info['data']['parents'] = [f.info['confid']]
return self.finalize_individual(indi), 'mutation: rotational'
def mutate(self, atoms):
"""Does the actual mutation."""
N = len(atoms) if self.n_top is None else self.n_top
slab = atoms[:len(atoms) - N]
atoms = atoms[-N:]
mutant = atoms.copy()
gather_atoms_by_tag(mutant)
pos = mutant.get_positions()
tags = mutant.get_tags()
eligible_tags = tags if self.tags is None else self.tags
indices = {}
for tag in np.unique(tags):
hits = np.where(tags == tag)[0]
if len(hits) > 1 and tag in eligible_tags:
indices[tag] = hits
n_rot = int(np.ceil(len(indices) * self.fraction))
chosen_tags = self.rng.choice(list(indices.keys()), size=n_rot,
replace=False)
too_close = True
count = 0
maxcount = 10000
while too_close and count < maxcount:
newpos = np.copy(pos)
for tag in chosen_tags:
p = np.copy(newpos[indices[tag]])
cop = np.mean(p, axis=0)
if len(p) == 2:
line = (p[1] - p[0]) / np.linalg.norm(p[1] - p[0])
while True:
axis = self.rng.rand(3)
axis /= np.linalg.norm(axis)
a = np.arccos(np.dot(axis, line))
if np.pi / 4 < a < np.pi * 3 / 4:
break
else:
axis = self.rng.rand(3)
axis /= np.linalg.norm(axis)
angle = self.min_angle
angle += 2 * (np.pi - self.min_angle) * self.rng.rand()
m = get_rotation_matrix(axis, angle)
newpos[indices[tag]] = np.dot(m, (p - cop).T).T + cop
mutant.set_positions(newpos)
mutant.wrap()
too_close = atoms_too_close(mutant, self.blmin, use_tags=True)
count += 1
if not too_close and self.test_dist_to_slab:
too_close = atoms_too_close_two_sets(slab, mutant, self.blmin)
if count == maxcount:
mutant = None
else:
mutant = slab + mutant
return mutant
[docs]class RattleRotationalMutation(CombinationMutation):
"""Combination of RattleMutation and RotationalMutation.
Parameters:
rattlemutation: OffspringCreator instance
A mutation that rattles atoms.
rotationalmutation: OffspringCreator instance
A mutation that rotates moieties.
"""
def __init__(self, rattlemutation, rotationalmutation, verbose=False):
super(RattleRotationalMutation, self).__init__(rattlemutation,
rotationalmutation,
verbose=verbose)
self.descriptor = 'rattlerotational'