Source code for ase.ga.soft_mutation

"""Soft-mutation operator and associated tools"""
import inspect
import json
import numpy as np
from ase.data import covalent_radii
from ase.neighborlist import NeighborList
from ase.ga.offspring_creator import OffspringCreator
from ase.ga.utilities import atoms_too_close, gather_atoms_by_tag
from scipy.spatial.distance import cdist


class TagFilter:
    """Filter which constrains same-tag atoms to behave
    like internally rigid moieties.
    """
    def __init__(self, atoms):
        self.atoms = atoms
        gather_atoms_by_tag(self.atoms)
        self.tags = self.atoms.get_tags()
        self.unique_tags = np.unique(self.tags)
        self.n = len(self.unique_tags)

    def get_positions(self):
        all_pos = self.atoms.get_positions()
        cop_pos = np.zeros((self.n, 3))
        for i in range(self.n):
            indices = np.where(self.tags == self.unique_tags[i])
            cop_pos[i] = np.average(all_pos[indices], axis=0)
        return cop_pos

    def set_positions(self, positions, **kwargs):
        cop_pos = self.get_positions()
        all_pos = self.atoms.get_positions()
        assert np.all(np.shape(positions) == np.shape(cop_pos))
        for i in range(self.n):
            indices = np.where(self.tags == self.unique_tags[i])
            shift = positions[i] - cop_pos[i]
            all_pos[indices] += shift
        self.atoms.set_positions(all_pos, **kwargs)

    def get_forces(self, *args, **kwargs):
        f = self.atoms.get_forces()
        forces = np.zeros((self.n, 3))
        for i in range(self.n):
            indices = np.where(self.tags == self.unique_tags[i])
            forces[i] = np.sum(f[indices], axis=0)
        return forces

    def get_masses(self):
        m = self.atoms.get_masses()
        masses = np.zeros(self.n)
        for i in range(self.n):
            indices = np.where(self.tags == self.unique_tags[i])
            masses[i] = np.sum(m[indices])
        return masses

    def __len__(self):
        return self.n


class PairwiseHarmonicPotential:
    """Parent class for interatomic potentials of the type
    E(r_ij) = 0.5 * k_ij * (r_ij - r0_ij) ** 2
    """
    def __init__(self, atoms, rcut=10.):
        self.atoms = atoms
        self.pos0 = atoms.get_positions()
        self.rcut = rcut

        # build neighborlist
        nat = len(self.atoms)
        self.nl = NeighborList([self.rcut / 2.] * nat, skin=0., bothways=True,
                               self_interaction=False)
        self.nl.update(self.atoms)

        self.calculate_force_constants()

    def calculate_force_constants(self):
        msg = 'Child class needs to define a calculate_force_constants() ' \
              'method which computes the force constants and stores them ' \
              'in self.force_constants (as a list which contains, for every ' \
              'atom, a list of the atom\'s force constants with its neighbors.'
        raise NotImplementedError(msg)

    def get_forces(self, atoms):
        pos = atoms.get_positions()
        cell = atoms.get_cell()
        forces = np.zeros_like(pos)

        for i, p in enumerate(pos):
            indices, offsets = self.nl.get_neighbors(i)
            p = pos[indices] + np.dot(offsets, cell)
            r = cdist(p, [pos[i]])
            v = (p - pos[i]) / r
            p0 = self.pos0[indices] + np.dot(offsets, cell)
            r0 = cdist(p0, [self.pos0[i]])
            dr = r - r0
            forces[i] = np.dot(self.force_constants[i].T, dr * v)

        return forces


def get_number_of_valence_electrons(Z):
    """Return the number of valence electrons for the element with
    atomic number Z, simply based on its periodic table group.
    """
    groups = [[], [1, 3, 11, 19, 37, 55, 87], [2, 4, 12, 20, 38, 56, 88],
              [21, 39, 57, 89]]

    for i in range(9):
        groups.append(i + np.array([22, 40, 72, 104]))

    for i in range(6):
        groups.append(i + np.array([5, 13, 31, 49, 81, 113]))

    for i, group in enumerate(groups):
        if Z in group:
            nval = i if i < 13 else i - 10
            break
    else:
        raise ValueError('Z=%d not included in this dataset.' % Z)

    return nval


class BondElectroNegativityModel(PairwiseHarmonicPotential):
    """Pairwise harmonic potential where the force constants are
    determined using the "bond electronegativity" model, see:

    * `Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632`__

      __ https://dx.doi.org/10.1016/j.cpc.2010.06.007

    * `Lyakhov, Oganov, Phys. Rev. B 84 (2011) 092103`__

      __ https://dx.doi.org/10.1103/PhysRevB.84.092103
    """
    def calculate_force_constants(self):
        cell = self.atoms.get_cell()
        pos = self.atoms.get_positions()
        num = self.atoms.get_atomic_numbers()
        nat = len(self.atoms)
        nl = self.nl

        # computing the force constants
        s_norms = []
        valence_states = []
        r_cov = []
        for i in range(nat):
            indices, offsets = nl.get_neighbors(i)
            p = pos[indices] + np.dot(offsets, cell)
            r = cdist(p, [pos[i]])
            r_ci = covalent_radii[num[i]]
            s = 0.
            for j, index in enumerate(indices):
                d = r[j] - r_ci - covalent_radii[num[index]]
                s += np.exp(-d / 0.37)
            s_norms.append(s)
            valence_states.append(get_number_of_valence_electrons(num[i]))
            r_cov.append(r_ci)

        self.force_constants = []
        for i in range(nat):
            indices, offsets = nl.get_neighbors(i)
            p = pos[indices] + np.dot(offsets, cell)
            r = cdist(p, [pos[i]])[:, 0]
            fc = []
            for j, ii in enumerate(indices):
                d = r[j] - r_cov[i] - r_cov[ii]
                chi_ik = 0.481 * valence_states[i] / (r_cov[i] + 0.5 * d)
                chi_jk = 0.481 * valence_states[ii] / (r_cov[ii] + 0.5 * d)
                cn_ik = s_norms[i] / np.exp(-d / 0.37)
                cn_jk = s_norms[ii] / np.exp(-d / 0.37)
                fc.append(np.sqrt(chi_ik * chi_jk / (cn_ik * cn_jk)))
            self.force_constants.append(np.array(fc))


[docs]class SoftMutation(OffspringCreator): """Mutates the structure by displacing it along the lowest (nonzero) frequency modes found by vibrational analysis, as in: `Lyakhov, Oganov, Valle, Comp. Phys. Comm. 181 (2010) 1623-1632`__ __ https://dx.doi.org/10.1016/j.cpc.2010.06.007 As in the reference above, the next-lowest mode is used if the structure has already been softmutated along the current-lowest mode. This mutation hence acts in a deterministic way, in contrast to most other genetic operators. If you find this implementation useful in your work, please consider citing: `Van den Bossche, Gronbeck, Hammer, J. Chem. Theory Comput. 14 (2018)`__ __ https://dx.doi.org/10.1021/acs.jctc.8b00039 in addition to the paper mentioned above. Parameters: blmin: dict The closest allowed interatomic distances on the form: {(Z, Z*): dist, ...}, where Z and Z* are atomic numbers. bounds: list Lower and upper limits (in Angstrom) for the largest atomic displacement in the structure. For a given mode, the algorithm starts at zero amplitude and increases it until either blmin is violated or the largest displacement exceeds the provided upper bound). If the largest displacement in the resulting structure is lower than the provided lower bound, the mutant is considered too similar to the parent and None is returned. calculator: ASE calculator object The calculator to be used in the vibrational analysis. The default is to use a calculator based on pairwise harmonic potentials with force constants from the "bond electronegativity" model described in the reference above. Any calculator with a working :func:`get_forces()` method will work. rcut: float Cutoff radius in Angstrom for the pairwise harmonic potentials. used_modes_file: str or None Name of json dump file where previously used modes will be stored (and read). If None, no such file will be used. Default is to use the filename 'used_modes.json'. use_tags: boolean Whether to use the atomic tags to preserve molecular identity. """ def __init__(self, blmin, bounds=[0.5, 2.0], calculator=BondElectroNegativityModel, rcut=10., used_modes_file='used_modes.json', use_tags=False, verbose=False): OffspringCreator.__init__(self, verbose) self.blmin = blmin self.bounds = bounds self.calc = calculator self.rcut = rcut self.used_modes_file = used_modes_file self.use_tags = use_tags self.descriptor = 'SoftMutation' self.used_modes = {} if self.used_modes_file is not None: try: self.read_used_modes(self.used_modes_file) except IOError: # file doesn't exist (yet) pass def _get_hessian(self, atoms, dx): """Returns the Hessian matrix d2E/dxi/dxj using a first-order central difference scheme with displacements dx. """ N = len(atoms) pos = atoms.get_positions() hessian = np.zeros((3 * N, 3 * N)) for i in range(3 * N): row = np.zeros(3 * N) for direction in [-1, 1]: disp = np.zeros(3) disp[i % 3] = direction * dx pos_disp = np.copy(pos) pos_disp[i // 3] += disp atoms.set_positions(pos_disp) f = atoms.get_forces() row += -1 * direction * f.flatten() row /= (2. * dx) hessian[i] = row hessian += np.copy(hessian).T hessian *= 0.5 atoms.set_positions(pos) return hessian def _calculate_normal_modes(self, atoms, dx=0.02, massweighing=False): """Performs the vibrational analysis.""" hessian = self._get_hessian(atoms, dx) if massweighing: m = np.array([np.repeat(atoms.get_masses()**-0.5, 3)]) hessian *= (m * m.T) eigvals, eigvecs = np.linalg.eigh(hessian) modes = {eigval: eigvecs[:, i] for i, eigval in enumerate(eigvals)} return modes def animate_mode(self, atoms, mode, nim=30, amplitude=1.0): """Returns an Atoms object showing an animation of the mode.""" pos = atoms.get_positions() mode = mode.reshape(np.shape(pos)) animation = [] for i in range(nim): newpos = pos + amplitude * mode * np.sin(i * 2 * np.pi / nim) image = atoms.copy() image.positions = newpos animation.append(image) return animation def read_used_modes(self, filename): """Read used modes from json file.""" with open(filename, 'r') as fd: modes = json.load(fd) self.used_modes = {int(k): modes[k] for k in modes} return def write_used_modes(self, filename): """Dump used modes to json file.""" with open(filename, 'w') as fd: json.dump(self.used_modes, fd) return def get_new_individual(self, parents): f = parents[0] indi = self.mutate(f) if indi is None: return indi, 'mutation: soft' indi = self.initialize_individual(f, indi) indi.info['data']['parents'] = [f.info['confid']] return self.finalize_individual(indi), 'mutation: soft' def mutate(self, atoms): """Does the actual mutation.""" a = atoms.copy() if inspect.isclass(self.calc): assert issubclass(self.calc, PairwiseHarmonicPotential) calc = self.calc(atoms, rcut=self.rcut) else: calc = self.calc a.calc = calc if self.use_tags: a = TagFilter(a) pos = a.get_positions() modes = self._calculate_normal_modes(a) # Select the mode along which we want to move the atoms; # The first 3 translational modes as well as previously # applied modes are discarded. keys = np.array(sorted(modes)) index = 3 confid = atoms.info['confid'] if confid in self.used_modes: while index in self.used_modes[confid]: index += 1 self.used_modes[confid].append(index) else: self.used_modes[confid] = [index] if self.used_modes_file is not None: self.write_used_modes(self.used_modes_file) key = keys[index] mode = modes[key].reshape(np.shape(pos)) # Find a suitable amplitude for translation along the mode; # at every trial amplitude both positive and negative # directions are tried. mutant = atoms.copy() amplitude = 0. increment = 0.1 direction = 1 largest_norm = np.max(np.apply_along_axis(np.linalg.norm, 1, mode)) def expand(atoms, positions): if isinstance(atoms, TagFilter): a.set_positions(positions) return a.atoms.get_positions() else: return positions while amplitude * largest_norm < self.bounds[1]: pos_new = pos + direction * amplitude * mode pos_new = expand(a, pos_new) mutant.set_positions(pos_new) mutant.wrap() too_close = atoms_too_close(mutant, self.blmin, use_tags=self.use_tags) if too_close: amplitude -= increment pos_new = pos + direction * amplitude * mode pos_new = expand(a, pos_new) mutant.set_positions(pos_new) mutant.wrap() break if direction == 1: direction = -1 else: direction = 1 amplitude += increment if amplitude * largest_norm < self.bounds[0]: mutant = None return mutant