Source code for ase.ga.cutandsplicepairing

"""Implementation of the cut-and-splice paring operator."""
import numpy as np
from ase import Atoms
from ase.geometry import find_mic
from ase.ga.utilities import (atoms_too_close, atoms_too_close_two_sets,
                              gather_atoms_by_tag)
from ase.ga.offspring_creator import OffspringCreator


class Positions:
    """Helper object to simplify the pairing process.

    Parameters:

    scaled_positions: (Nx3) array
        Positions in scaled coordinates
    cop: (1x3) array
        Center-of-positions (also in scaled coordinates)
    symbols: str
        String with the atomic symbols
    distance: float
        Signed distance to the cutting plane
    origin: int (0 or 1)
        Determines at which side of the plane the position should be.
    """
    def __init__(self, scaled_positions, cop, symbols, distance, origin):
        self.scaled_positions = scaled_positions
        self.cop = cop
        self.symbols = symbols
        self.distance = distance
        self.origin = origin

    def to_use(self):
        """Tells whether this position is at the right side."""
        if self.distance > 0. and self.origin == 0:
            return True
        elif self.distance < 0. and self.origin == 1:
            return True
        else:
            return False


[docs]class CutAndSplicePairing(OffspringCreator): """The Cut and Splice operator by Deaven and Ho. Creates offspring from two parent structures using a randomly generated cutting plane. The parents may have different unit cells, in which case the offspring unit cell will be a random combination of the parent cells. The basic implementation (for fixed unit cells) is described in: `L.B. Vilhelmsen and B. Hammer, PRL, 108, 126101 (2012)`__ __ https://doi.org/10.1103/PhysRevLett.108.126101 The extension to variable unit cells is similar to: * `Glass, Oganov, Hansen, Comp. Phys. Comm. 175 (2006) 713-720`__ __ https://doi.org/10.1016/j.cpc.2006.07.020 * `Lonie, Zurek, Comp. Phys. Comm. 182 (2011) 372-387`__ __ https://doi.org/10.1016/j.cpc.2010.07.048 The operator can furthermore preserve molecular identity if desired (see the *use_tags* kwarg). Atoms with the same tag will then be considered as belonging to the same molecule, and their internal geometry will not be changed by the operator. If use_tags is enabled, the operator will also conserve the number of molecules of each kind (in addition to conserving the overall stoichiometry). Currently, molecules are considered to be of the same kind if their chemical symbol strings are identical. In rare cases where this may not be sufficient (i.e. when desiring to keep the same ratio of isomers), the different isomers can be differentiated by giving them different elemental orderings (e.g. 'XY2' and 'Y2X'). Parameters: slab: Atoms object Specifies the cell vectors and periodic boundary conditions to be applied to the randomly generated structures. Any included atoms (e.g. representing an underlying slab) are copied to these new structures. n_top: int The number of atoms to optimize blmin: dict Dictionary with minimal interatomic distances. Note: when preserving molecular identity (see use_tags), the blmin dict will (naturally) only be applied to intermolecular distances (not the intramolecular ones). number_of_variable_cell_vectors: int (default 0) The number of variable cell vectors (0, 1, 2 or 3). To keep things simple, it is the 'first' vectors which will be treated as variable, i.e. the 'a' vector in the univariate case, the 'a' and 'b' vectors in the bivariate case, etc. p1: float or int between 0 and 1 Probability that a parent is shifted over a random distance along the normal of the cutting plane (only operative if number_of_variable_cell_vectors > 0). p2: float or int between 0 and 1 Same as p1, but for shifting along the directions in the cutting plane (only operative if number_of_variable_cell_vectors > 0). minfrac: float between 0 and 1, or None (default) Minimal fraction of atoms a parent must contribute to the child. If None, each parent must contribute at least one atom. cellbounds: ase.ga.utilities.CellBounds instance Describing limits on the cell shape, see :class:`~ase.ga.utilities.CellBounds`. Note that it only make sense to impose conditions regarding cell vectors which have been marked as variable (see number_of_variable_cell_vectors). use_tags: bool Whether to use the atomic tags to preserve molecular identity. test_dist_to_slab: bool (default True) Whether to make sure that the distances between the atoms and the slab satisfy the blmin. rng: Random number generator By default numpy.random. """ def __init__(self, slab, n_top, blmin, number_of_variable_cell_vectors=0, p1=1, p2=0.05, minfrac=None, cellbounds=None, test_dist_to_slab=True, use_tags=False, rng=np.random, verbose=False): OffspringCreator.__init__(self, verbose, rng=rng) self.slab = slab self.n_top = n_top self.blmin = blmin assert number_of_variable_cell_vectors in range(4) self.number_of_variable_cell_vectors = number_of_variable_cell_vectors self.p1 = p1 self.p2 = p2 self.minfrac = minfrac self.cellbounds = cellbounds self.test_dist_to_slab = test_dist_to_slab self.use_tags = use_tags self.scaling_volume = None self.descriptor = 'CutAndSplicePairing' self.min_inputs = 2 def update_scaling_volume(self, population, w_adapt=0.5, n_adapt=0): """Updates the scaling volume that is used in the pairing w_adapt: weight of the new vs the old scaling volume n_adapt: number of best candidates in the population that are used to calculate the new scaling volume """ if not n_adapt: # take best 20% of the population n_adapt = int(np.ceil(0.2 * len(population))) v_new = np.mean([a.get_volume() for a in population[:n_adapt]]) if not self.scaling_volume: self.scaling_volume = v_new else: volumes = [self.scaling_volume, v_new] weights = [1 - w_adapt, w_adapt] self.scaling_volume = np.average(volumes, weights=weights) def get_new_individual(self, parents): """The method called by the user that returns the paired structure.""" f, m = parents indi = self.cross(f, m) desc = 'pairing: {0} {1}'.format(f.info['confid'], m.info['confid']) # It is ok for an operator to return None # It means that it could not make a legal offspring # within a reasonable amount of time if indi is None: return indi, desc indi = self.initialize_individual(f, indi) indi.info['data']['parents'] = [f.info['confid'], m.info['confid']] return self.finalize_individual(indi), desc def cross(self, a1, a2): """Crosses the two atoms objects and returns one""" if len(a1) != len(self.slab) + self.n_top: raise ValueError('Wrong size of structure to optimize') if len(a1) != len(a2): raise ValueError('The two structures do not have the same length') N = self.n_top # Only consider the atoms to optimize a1 = a1[len(a1) - N: len(a1)] a2 = a2[len(a2) - N: len(a2)] if not np.array_equal(a1.numbers, a2.numbers): err = 'Trying to pair two structures with different stoichiometry' raise ValueError(err) if self.use_tags and not np.array_equal(a1.get_tags(), a2.get_tags()): err = 'Trying to pair two structures with different tags' raise ValueError(err) cell1 = a1.get_cell() cell2 = a2.get_cell() for i in range(self.number_of_variable_cell_vectors, 3): err = 'Unit cells are supposed to be identical in direction %d' assert np.allclose(cell1[i], cell2[i]), (err % i, cell1, cell2) invalid = True counter = 0 maxcount = 1000 a1_copy = a1.copy() a2_copy = a2.copy() # Run until a valid pairing is made or maxcount pairings are tested. while invalid and counter < maxcount: counter += 1 newcell = self.generate_unit_cell(cell1, cell2) if newcell is None: # No valid unit cell could be generated. # This strongly suggests that it is near-impossible # to generate one from these parent cells and it is # better to abort now. break # Choose direction of cutting plane normal if self.number_of_variable_cell_vectors == 0: # Will be generated entirely at random theta = np.pi * self.rng.rand() phi = 2. * np.pi * self.rng.rand() cut_n = np.array([np.cos(phi) * np.sin(theta), np.sin(phi) * np.sin(theta), np.cos(theta)]) else: # Pick one of the 'variable' cell vectors cut_n = self.rng.choice(self.number_of_variable_cell_vectors) # Randomly translate parent structures for a_copy, a in zip([a1_copy, a2_copy], [a1, a2]): a_copy.set_positions(a.get_positions()) cell = a_copy.get_cell() for i in range(self.number_of_variable_cell_vectors): r = self.rng.rand() cond1 = i == cut_n and r < self.p1 cond2 = i != cut_n and r < self.p2 if cond1 or cond2: a_copy.positions += self.rng.rand() * cell[i] if self.use_tags: # For correct determination of the center- # of-position of the multi-atom blocks, # we need to group their constituent atoms # together gather_atoms_by_tag(a_copy) else: a_copy.wrap() # Generate the cutting point in scaled coordinates cosp1 = np.average(a1_copy.get_scaled_positions(), axis=0) cosp2 = np.average(a2_copy.get_scaled_positions(), axis=0) cut_p = np.zeros((1, 3)) for i in range(3): if i < self.number_of_variable_cell_vectors: cut_p[0, i] = self.rng.rand() else: cut_p[0, i] = 0.5 * (cosp1[i] + cosp2[i]) # Perform the pairing: child = self._get_pairing(a1_copy, a2_copy, cut_p, cut_n, newcell) if child is None: continue # Verify whether the atoms are too close or not: if atoms_too_close(child, self.blmin, use_tags=self.use_tags): continue if self.test_dist_to_slab and len(self.slab) > 0: if atoms_too_close_two_sets(self.slab, child, self.blmin): continue # Passed all the tests child = self.slab + child child.set_cell(newcell, scale_atoms=False) child.wrap() return child return None def generate_unit_cell(self, cell1, cell2, maxcount=10000): """Generates a new unit cell by a random linear combination of the parent cells. The new cell must satisfy the self.cellbounds constraints. Returns None if no such cell was generated within a given number of attempts. Parameters: maxcount: int The maximal number of attempts. """ # First calculate the scaling volume if not self.scaling_volume: v1 = np.abs(np.linalg.det(cell1)) v2 = np.abs(np.linalg.det(cell2)) r = self.rng.rand() v_ref = r * v1 + (1 - r) * v2 else: v_ref = self.scaling_volume # Now the cell vectors if self.number_of_variable_cell_vectors == 0: assert np.allclose(cell1, cell2), 'Parent cells are not the same' newcell = np.copy(cell1) else: count = 0 while count < maxcount: r = self.rng.rand() newcell = r * cell1 + (1 - r) * cell2 vol = abs(np.linalg.det(newcell)) scaling = v_ref / vol scaling **= 1. / self.number_of_variable_cell_vectors newcell[:self.number_of_variable_cell_vectors] *= scaling found = True if self.cellbounds is not None: found = self.cellbounds.is_within_bounds(newcell) if found: break count += 1 else: # Did not find acceptable cell newcell = None return newcell def _get_pairing(self, a1, a2, cutting_point, cutting_normal, cell): """Creates a child from two parents using the given cut. Returns None if the generated structure does not contain a large enough fraction of each parent (see self.minfrac). Does not check whether atoms are too close. Assumes the 'slab' parts have been removed from the parent structures and that these have been checked for equal lengths, stoichiometries, and tags (if self.use_tags). Parameters: cutting_normal: int or (1x3) array cutting_point: (1x3) array In fractional coordinates cell: (3x3) array The unit cell for the child structure """ symbols = a1.get_chemical_symbols() tags = a1.get_tags() if self.use_tags else np.arange(len(a1)) # Generate list of all atoms / atom groups: p1, p2, sym = [], [], [] for i in np.unique(tags): indices = np.where(tags == i)[0] s = ''.join([symbols[j] for j in indices]) sym.append(s) for i, (a, p) in enumerate(zip([a1, a2], [p1, p2])): c = a.get_cell() cop = np.mean(a.positions[indices], axis=0) cut_p = np.dot(cutting_point, c) if isinstance(cutting_normal, int): vecs = [c[j] for j in range(3) if j != cutting_normal] cut_n = np.cross(vecs[0], vecs[1]) else: cut_n = np.dot(cutting_normal, c) d = np.dot(cop - cut_p, cut_n) spos = a.get_scaled_positions()[indices] scop = np.mean(spos, axis=0) p.append(Positions(spos, scop, s, d, i)) all_points = p1 + p2 unique_sym = np.unique(sym) types = {s: sym.count(s) for s in unique_sym} # Sort these by chemical symbols: all_points.sort(key=lambda x: x.symbols, reverse=True) # For each atom type make the pairing unique_sym.sort() use_total = dict() for s in unique_sym: used = [] not_used = [] # The list is looked trough in # reverse order so atoms can be removed # from the list along the way. for i in reversed(range(len(all_points))): # If there are no more atoms of this type if all_points[i].symbols != s: break # Check if the atom should be included if all_points[i].to_use(): used.append(all_points.pop(i)) else: not_used.append(all_points.pop(i)) assert len(used) + len(not_used) == types[s] * 2 # While we have too few of the given atom type while len(used) < types[s]: index = self.rng.randint(len(not_used)) used.append(not_used.pop(index)) # While we have too many of the given atom type while len(used) > types[s]: # remove randomly: index = self.rng.randint(len(used)) not_used.append(used.pop(index)) use_total[s] = used n_tot = sum([len(ll) for ll in use_total.values()]) assert n_tot == len(sym) # check if the generated structure contains # atoms from both parents: count1, count2, N = 0, 0, len(a1) for x in use_total.values(): count1 += sum([y.origin == 0 for y in x]) count2 += sum([y.origin == 1 for y in x]) nmin = 1 if self.minfrac is None else int(round(self.minfrac * N)) if count1 < nmin or count2 < nmin: return None # Construct the cartesian positions and reorder the atoms # to follow the original order newpos = [] pbc = a1.get_pbc() for s in sym: p = use_total[s].pop() c = a1.get_cell() if p.origin == 0 else a2.get_cell() pos = np.dot(p.scaled_positions, c) cop = np.dot(p.cop, c) vectors, lengths = find_mic(pos - cop, c, pbc) newcop = np.dot(p.cop, cell) pos = newcop + vectors for row in pos: newpos.append(row) newpos = np.reshape(newpos, (N, 3)) num = a1.get_atomic_numbers() child = Atoms(numbers=num, positions=newpos, pbc=pbc, cell=cell, tags=tags) child.wrap() return child