Source code for ase.dft.stm

import numpy as np
from ase.io.jsonio import read_json, write_json


[docs]class STM: def __init__(self, atoms, symmetries=None, use_density=False): """Scanning tunneling microscope. atoms: Atoms object or filename Atoms to scan or name of file to read LDOS from. symmetries: list of int List of integers 0, 1, and/or 2 indicating which surface symmetries have been used to reduce the number of k-points for the DFT calculation. The three integers correspond to the following three symmetry operations:: [-1 0] [ 1 0] [ 0 1] [ 0 1] [ 0 -1] [ 1 0] use_density: bool Use the electron density instead of the LDOS. """ self.use_density = use_density if isinstance(atoms, str): with open(atoms, 'r') as fd: self.ldos, self.bias, self.cell = read_json(fd, always_array=False) self.atoms = None else: self.atoms = atoms self.cell = atoms.cell self.bias = None self.ldos = None assert not self.cell[2, :2].any() and not self.cell[:2, 2].any() self.symmetries = symmetries or []
[docs] def calculate_ldos(self, bias): """Calculate local density of states for given bias.""" if self.ldos is not None and bias == self.bias: return self.bias = bias calc = self.atoms.calc if self.use_density: self.ldos = calc.get_pseudo_density() return if bias < 0: emin = bias emax = 0.0 else: emin = 0 emax = bias nbands = calc.get_number_of_bands() weights = calc.get_k_point_weights() nkpts = len(weights) nspins = calc.get_number_of_spins() eigs = np.array([[calc.get_eigenvalues(k, s) for k in range(nkpts)] for s in range(nspins)]) eigs -= calc.get_fermi_level() ldos = np.zeros(calc.get_pseudo_wave_function(0, 0, 0).shape) for s in range(nspins): for k in range(nkpts): for n in range(nbands): e = eigs[s, k, n] if emin < e < emax: psi = calc.get_pseudo_wave_function(n, k, s) ldos += weights[k] * (psi * np.conj(psi)).real if 0 in self.symmetries: # (x,y) -> (-x,y) ldos[1:] += ldos[:0:-1].copy() ldos[1:] *= 0.5 if 1 in self.symmetries: # (x,y) -> (x,-y) ldos[:, 1:] += ldos[:, :0:-1].copy() ldos[:, 1:] *= 0.5 if 2 in self.symmetries: # (x,y) -> (y,x) ldos += ldos.transpose((1, 0, 2)).copy() ldos *= 0.5 self.ldos = ldos
[docs] def write(self, filename): """Write local density of states to JSON file.""" write_json(filename, (self.ldos, self.bias, self.cell))
[docs] def get_averaged_current(self, bias, z): """Calculate avarage current at height z (in Angstrom). Use this to get an idea of what current to use when scanning.""" self.calculate_ldos(bias) nz = self.ldos.shape[2] # Find grid point: n = z / self.cell[2, 2] * nz dn = n - np.floor(n) n = int(n) % nz # Average and do linear interpolation: return ((1 - dn) * self.ldos[:, :, n].mean() + dn * self.ldos[:, :, (n + 1) % nz].mean())
[docs] def scan(self, bias, current, z0=None, repeat=(1, 1)): """Constant current 2-d scan. Returns three 2-d arrays (x, y, z) containing x-coordinates, y-coordinates and heights. These three arrays can be passed to matplotlibs contourf() function like this: >>> import matplotlib.pyplot as plt >>> plt.contourf(x, y, z) >>> plt.show() """ self.calculate_ldos(bias) L = self.cell[2, 2] nz = self.ldos.shape[2] h = L / nz ldos = self.ldos.reshape((-1, nz)) heights = np.empty(ldos.shape[0]) for i, a in enumerate(ldos): heights[i] = find_height(a, current, h, z0) s0 = heights.shape = self.ldos.shape[:2] heights = np.tile(heights, repeat) s = heights.shape ij = np.indices(s, dtype=float).reshape((2, -1)).T x, y = np.dot(ij / s0, self.cell[:2, :2]).T.reshape((2,) + s) return x, y, heights
[docs] def scan2(self, bias, z, repeat=(1, 1)): """Constant height 2-d scan. Returns three 2-d arrays (x, y, I) containing x-coordinates, y-coordinates and currents. These three arrays can be passed to matplotlibs contourf() function like this: >>> import matplotlib.pyplot as plt >>> plt.contourf(x, y, I) >>> plt.show() """ self.calculate_ldos(bias) nz = self.ldos.shape[2] ldos = self.ldos.reshape((-1, nz)) I = np.empty(ldos.shape[0]) zp = z / self.cell[2, 2] * nz zp = int(zp) % nz for i, a in enumerate(ldos): I[i] = self.find_current(a, zp) s0 = I.shape = self.ldos.shape[:2] I = np.tile(I, repeat) s = I.shape ij = np.indices(s, dtype=float).reshape((2, -1)).T x, y = np.dot(ij / s0, self.cell[:2, :2]).T.reshape((2,) + s) # Returing scan with axes in Angstrom. return x, y, I
[docs] def linescan(self, bias, current, p1, p2, npoints=50, z0=None): """Constant current line scan. Example:: stm = STM(...) z = ... # tip position c = stm.get_averaged_current(-1.0, z) stm.linescan(-1.0, c, (1.2, 0.0), (1.2, 3.0)) """ heights = self.scan(bias, current, z0)[2] p1 = np.asarray(p1, float) p2 = np.asarray(p2, float) d = p2 - p1 s = np.dot(d, d)**0.5 cell = self.cell[:2, :2] shape = np.array(heights.shape, float) M = np.linalg.inv(cell) line = np.empty(npoints) for i in range(npoints): p = p1 + i * d / (npoints - 1) q = np.dot(p, M) * shape line[i] = interpolate(q, heights) return np.linspace(0, s, npoints), line
[docs] def pointcurrent(self, bias, x, y, z): """Current for a single x, y, z position for a given bias.""" self.calculate_ldos(bias) nx = self.ldos.shape[0] ny = self.ldos.shape[1] nz = self.ldos.shape[2] # Find grid point: xp = x / np.linalg.norm(self.cell[0]) * nx dx = xp - np.floor(xp) xp = int(xp) % nx yp = y / np.linalg.norm(self.cell[1]) * ny dy = yp - np.floor(yp) yp = int(yp) % ny zp = z / np.linalg.norm(self.cell[2]) * nz dz = zp - np.floor(zp) zp = int(zp) % nz # 3D interpolation of the LDOS at point (x,y,z) at given bias. xyzldos = (((1 - dx) + (1 - dy) + (1 - dz)) * self.ldos[xp, yp, zp] + dx * self.ldos[(xp + 1) % nx, yp, zp] + dy * self.ldos[xp, (yp + 1) % ny, zp] + dz * self.ldos[xp, yp, (zp + 1) % nz]) return dos2current(bias, xyzldos)
[docs] def sts(self, x, y, z, bias0, bias1, biasstep): """Returns the dI/dV curve for position x, y at height z (in Angstrom), for bias from bias0 to bias1 with step biasstep.""" biases = np.arange(bias0, bias1+biasstep, biasstep) I = np.zeros(biases.shape) for b in np.arange(len(biases)): print(b, biases[b]) I[b] = self.pointcurrent(biases[b], x, y, z) dIdV = np.gradient(I, biasstep) return biases, I, dIdV
[docs] def find_current(self, ldos, z): """ Finds current for given LDOS at height z.""" nz = self.ldos.shape[2] zp = z / self.cell[2, 2] * nz dz = zp - np.floor(zp) zp = int(zp) % nz ldosz = (1 - dz) * ldos[zp] + dz * ldos[(zp + 1) % nz] return dos2current(self.bias, ldosz)
def dos2current(bias, dos): # Borrowed from gpaw/analyse/simple_stm.py: # The connection between density n and current I # n [e/Angstrom^3] = 0.0002 sqrt(I [nA]) # as given in Hofer et al., RevModPhys 75 (2003) 1287 return 5000. * dos**2 * (1 if bias > 0 else -1) def interpolate(q, heights): qi = q.astype(int) f = q - qi g = 1 - f qi %= heights.shape n0, m0 = qi n1, m1 = (qi + 1) % heights.shape z = (g[0] * g[1] * heights[n0, m0] + f[0] * g[1] * heights[n1, m0] + g[0] * f[1] * heights[n0, m1] + f[0] * f[1] * heights[n1, m1]) return z def find_height(ldos, current, h, z0=None): if z0 is None: n = len(ldos) - 2 else: n = int(z0 / h) while n >= 0: if ldos[n] > current: break n -= 1 else: return 0.0 c2, c1 = ldos[n:n + 2] return (n + 1 - (current - c1) / (c2 - c1)) * h def delta(biases, bias, width): """Return a delta-function centered at 'bias'""" x = -((biases - bias) / width)**2 return np.exp(x) / (np.sqrt(np.pi) * width)