Source code for ase.dft.dos

from math import pi, sqrt

import numpy as np

from ase.dft.kpoints import get_monkhorst_pack_size_and_offset
from ase.parallel import world
from ase.utils.cext import cextension


[docs]class DOS: def __init__(self, calc, width=0.1, window=None, npts=401, comm=world): """Electronic Density Of States object. calc: calculator object Any ASE compliant calculator object. width: float Width of guassian smearing. Use width=0.0 for linear tetrahedron interpolation. window: tuple of two float Use ``window=(emin, emax)``. If not specified, a window big enough to hold all the eigenvalues will be used. npts: int Number of points. comm: communicator object MPI communicator for lti_dos """ self.comm = comm self.npts = npts self.width = width self.w_k = calc.get_k_point_weights() self.nspins = calc.get_number_of_spins() self.e_skn = np.array([[calc.get_eigenvalues(kpt=k, spin=s) for k in range(len(self.w_k))] for s in range(self.nspins)]) try: # two Fermi levels for i, eF in enumerate(calc.get_fermi_level()): self.e_skn[i] -= eF except TypeError: # a single Fermi level self.e_skn -= calc.get_fermi_level() if window is None: emin = None emax = None else: emin, emax = window if emin is None: emin = self.e_skn.min() - 5 * self.width if emax is None: emax = self.e_skn.max() + 5 * self.width self.energies = np.linspace(emin, emax, npts) if width == 0.0: bzkpts = calc.get_bz_k_points() size, offset = get_monkhorst_pack_size_and_offset(bzkpts) bz2ibz = calc.get_bz_to_ibz_map() shape = (self.nspins,) + tuple(size) + (-1,) self.e_skn = self.e_skn[:, bz2ibz].reshape(shape) self.cell = calc.atoms.cell
[docs] def get_energies(self): """Return the array of energies used to sample the DOS. The energies are reported relative to the Fermi level. """ return self.energies
def delta(self, energy): """Return a delta-function centered at 'energy'.""" x = -((self.energies - energy) / self.width)**2 return np.exp(x) / (sqrt(pi) * self.width)
[docs] def get_dos(self, spin=None): """Get array of DOS values. The *spin* argument can be 0 or 1 (spin up or down) - if not specified, the total DOS is returned. """ if spin is None: if self.nspins == 2: # Return the total DOS return self.get_dos(spin=0) + self.get_dos(spin=1) else: return 2 * self.get_dos(spin=0) elif spin == 1 and self.nspins == 1: # For an unpolarized calculation, spin up and down are equivalent spin = 0 if self.width == 0.0: dos = linear_tetrahedron_integration(self.cell, self.e_skn[spin], self.energies, comm=self.comm) return dos dos = np.zeros(self.npts) for w, e_n in zip(self.w_k, self.e_skn[spin]): for e in e_n: dos += w * self.delta(e) return dos
[docs]def linear_tetrahedron_integration(cell, eigs, energies, weights=None, comm=world): """DOS from linear tetrahedron interpolation. cell: 3x3 ndarray-like Unit cell. eigs: (n1, n2, n3, nbands)-shaped ndarray Eigenvalues on a Monkhorst-Pack grid (not reduced). energies: 1-d array-like Energies where the DOS is calculated (must be a uniform grid). weights: ndarray of shape (n1, n2, n3, nbands) or (n1, n2, n3, nbands, nw) Weights. Defaults to a (n1, n2, n3, nbands)-shaped ndarray filled with ones. Can also have an extra dimednsion if there are nw weights. comm: communicator object MPI communicator for lti_dos Returns: DOS as an ndarray of same length as energies or as an ndarray of shape (nw, len(energies)). See: Extensions of the tetrahedron method for evaluating spectral properties of solids, A. H. MacDonald, S. H. Vosko and P. T. Coleridge, 1979 J. Phys. C: Solid State Phys. 12 2991, https://doi.org/10.1088/0022-3719/12/15/008 """ from scipy.spatial import Delaunay # Find the 6 tetrahedra: size = eigs.shape[:3] B = (np.linalg.inv(cell) / size).T indices = np.array([[i, j, k] for i in [0, 1] for j in [0, 1] for k in [0, 1]]) dt = Delaunay(np.dot(indices, B)) if weights is None: weights = np.ones_like(eigs) if weights.ndim == 4: extra_dimension_added = True weights = weights[:, :, :, :, np.newaxis] else: extra_dimension_added = False nweights = weights.shape[4] dos = np.empty((nweights, len(energies))) lti_dos(indices[dt.simplices], eigs, weights, energies, dos, comm) dos /= np.prod(size) if extra_dimension_added: return dos[0] return dos
@cextension def lti_dos(simplices, eigs, weights, energies, dos, world): shape = eigs.shape[:3] nweights = weights.shape[-1] dos[:] = 0.0 n = -1 for index in np.indices(shape).reshape((3, -1)).T: n += 1 if n % world.size != world.rank: continue i = ((index + simplices) % shape).T E = eigs[i[0], i[1], i[2]].reshape((4, -1)) W = weights[i[0], i[1], i[2]].reshape((4, -1, nweights)) for e, w in zip(E.T, W.transpose((1, 0, 2))): lti_dos1(e, w, energies, dos) dos /= 6.0 world.sum(dos) def lti_dos1(e, w, energies, dos): i = e.argsort() e0, e1, e2, e3 = en = e[i] w = w[i] zero = energies[0] if len(energies) > 1: de = energies[1] - zero nn = (np.floor((en - zero) / de).astype(int) + 1).clip(0, len(energies)) else: nn = (en > zero).astype(int) n0, n1, n2, n3 = nn if n1 > n0: s = slice(n0, n1) x = energies[s] - e0 f10 = x / (e1 - e0) f20 = x / (e2 - e0) f30 = x / (e3 - e0) f01 = 1 - f10 f02 = 1 - f20 f03 = 1 - f30 g = f20 * f30 / (e1 - e0) dos[:, s] += w.T.dot([f01 + f02 + f03, f10, f20, f30]) * g if n2 > n1: delta = e3 - e0 s = slice(n1, n2) x = energies[s] f20 = (x - e0) / (e2 - e0) f30 = (x - e0) / (e3 - e0) f21 = (x - e1) / (e2 - e1) f31 = (x - e1) / (e3 - e1) f02 = 1 - f20 f03 = 1 - f30 f12 = 1 - f21 f13 = 1 - f31 g = 3 / delta * (f12 * f20 + f21 * f13) dos[:, s] += w.T.dot([g * f03 / 3 + f02 * f20 * f12 / delta, g * f12 / 3 + f13 * f13 * f21 / delta, g * f21 / 3 + f20 * f20 * f12 / delta, g * f30 / 3 + f31 * f13 * f21 / delta]) if n3 > n2: s = slice(n2, n3) x = energies[s] - e3 f03 = x / (e0 - e3) f13 = x / (e1 - e3) f23 = x / (e2 - e3) f30 = 1 - f03 f31 = 1 - f13 f32 = 1 - f23 g = f03 * f13 / (e3 - e2) dos[:, s] += w.T.dot([f03, f13, f23, f30 + f31 + f32]) * g def ltidos(*args, **kwargs): raise DeprecationWarning('Please use linear_tetrahedron_integration().')