from math import pi, sqrt
import numpy as np
from ase.dft.kpoints import get_monkhorst_pack_size_and_offset
from ase.parallel import world
from ase.utils.cext import cextension
[docs]class DOS:
def __init__(self, calc, width=0.1, window=None, npts=401, comm=world):
"""Electronic Density Of States object.
calc: calculator object
Any ASE compliant calculator object.
width: float
Width of guassian smearing. Use width=0.0 for linear tetrahedron
interpolation.
window: tuple of two float
Use ``window=(emin, emax)``. If not specified, a window
big enough to hold all the eigenvalues will be used.
npts: int
Number of points.
comm: communicator object
MPI communicator for lti_dos
"""
self.comm = comm
self.npts = npts
self.width = width
self.w_k = calc.get_k_point_weights()
self.nspins = calc.get_number_of_spins()
self.e_skn = np.array([[calc.get_eigenvalues(kpt=k, spin=s)
for k in range(len(self.w_k))]
for s in range(self.nspins)])
try: # two Fermi levels
for i, eF in enumerate(calc.get_fermi_level()):
self.e_skn[i] -= eF
except TypeError: # a single Fermi level
self.e_skn -= calc.get_fermi_level()
if window is None:
emin = None
emax = None
else:
emin, emax = window
if emin is None:
emin = self.e_skn.min() - 5 * self.width
if emax is None:
emax = self.e_skn.max() + 5 * self.width
self.energies = np.linspace(emin, emax, npts)
if width == 0.0:
bzkpts = calc.get_bz_k_points()
size, offset = get_monkhorst_pack_size_and_offset(bzkpts)
bz2ibz = calc.get_bz_to_ibz_map()
shape = (self.nspins,) + tuple(size) + (-1,)
self.e_skn = self.e_skn[:, bz2ibz].reshape(shape)
self.cell = calc.atoms.cell
[docs] def get_energies(self):
"""Return the array of energies used to sample the DOS.
The energies are reported relative to the Fermi level.
"""
return self.energies
def delta(self, energy):
"""Return a delta-function centered at 'energy'."""
x = -((self.energies - energy) / self.width)**2
return np.exp(x) / (sqrt(pi) * self.width)
[docs] def get_dos(self, spin=None):
"""Get array of DOS values.
The *spin* argument can be 0 or 1 (spin up or down) - if not
specified, the total DOS is returned.
"""
if spin is None:
if self.nspins == 2:
# Return the total DOS
return self.get_dos(spin=0) + self.get_dos(spin=1)
else:
return 2 * self.get_dos(spin=0)
elif spin == 1 and self.nspins == 1:
# For an unpolarized calculation, spin up and down are equivalent
spin = 0
if self.width == 0.0:
dos = linear_tetrahedron_integration(self.cell, self.e_skn[spin],
self.energies, comm=self.comm)
return dos
dos = np.zeros(self.npts)
for w, e_n in zip(self.w_k, self.e_skn[spin]):
for e in e_n:
dos += w * self.delta(e)
return dos
[docs]def linear_tetrahedron_integration(cell, eigs, energies,
weights=None, comm=world):
"""DOS from linear tetrahedron interpolation.
cell: 3x3 ndarray-like
Unit cell.
eigs: (n1, n2, n3, nbands)-shaped ndarray
Eigenvalues on a Monkhorst-Pack grid (not reduced).
energies: 1-d array-like
Energies where the DOS is calculated (must be a uniform grid).
weights: ndarray of shape (n1, n2, n3, nbands) or (n1, n2, n3, nbands, nw)
Weights. Defaults to a (n1, n2, n3, nbands)-shaped ndarray
filled with ones. Can also have an extra dimednsion if there are
nw weights.
comm: communicator object
MPI communicator for lti_dos
Returns:
DOS as an ndarray of same length as energies or as an
ndarray of shape (nw, len(energies)).
See:
Extensions of the tetrahedron method for evaluating
spectral properties of solids,
A. H. MacDonald, S. H. Vosko and P. T. Coleridge,
1979 J. Phys. C: Solid State Phys. 12 2991,
https://doi.org/10.1088/0022-3719/12/15/008
"""
from scipy.spatial import Delaunay
# Find the 6 tetrahedra:
size = eigs.shape[:3]
B = (np.linalg.inv(cell) / size).T
indices = np.array([[i, j, k]
for i in [0, 1] for j in [0, 1] for k in [0, 1]])
dt = Delaunay(np.dot(indices, B))
if weights is None:
weights = np.ones_like(eigs)
if weights.ndim == 4:
extra_dimension_added = True
weights = weights[:, :, :, :, np.newaxis]
else:
extra_dimension_added = False
nweights = weights.shape[4]
dos = np.empty((nweights, len(energies)))
lti_dos(indices[dt.simplices], eigs, weights, energies, dos, comm)
dos /= np.prod(size)
if extra_dimension_added:
return dos[0]
return dos
@cextension
def lti_dos(simplices, eigs, weights, energies, dos, world):
shape = eigs.shape[:3]
nweights = weights.shape[-1]
dos[:] = 0.0
n = -1
for index in np.indices(shape).reshape((3, -1)).T:
n += 1
if n % world.size != world.rank:
continue
i = ((index + simplices) % shape).T
E = eigs[i[0], i[1], i[2]].reshape((4, -1))
W = weights[i[0], i[1], i[2]].reshape((4, -1, nweights))
for e, w in zip(E.T, W.transpose((1, 0, 2))):
lti_dos1(e, w, energies, dos)
dos /= 6.0
world.sum(dos)
def lti_dos1(e, w, energies, dos):
i = e.argsort()
e0, e1, e2, e3 = en = e[i]
w = w[i]
zero = energies[0]
if len(energies) > 1:
de = energies[1] - zero
nn = (np.floor((en - zero) / de).astype(int) + 1).clip(0,
len(energies))
else:
nn = (en > zero).astype(int)
n0, n1, n2, n3 = nn
if n1 > n0:
s = slice(n0, n1)
x = energies[s] - e0
f10 = x / (e1 - e0)
f20 = x / (e2 - e0)
f30 = x / (e3 - e0)
f01 = 1 - f10
f02 = 1 - f20
f03 = 1 - f30
g = f20 * f30 / (e1 - e0)
dos[:, s] += w.T.dot([f01 + f02 + f03,
f10,
f20,
f30]) * g
if n2 > n1:
delta = e3 - e0
s = slice(n1, n2)
x = energies[s]
f20 = (x - e0) / (e2 - e0)
f30 = (x - e0) / (e3 - e0)
f21 = (x - e1) / (e2 - e1)
f31 = (x - e1) / (e3 - e1)
f02 = 1 - f20
f03 = 1 - f30
f12 = 1 - f21
f13 = 1 - f31
g = 3 / delta * (f12 * f20 + f21 * f13)
dos[:, s] += w.T.dot([g * f03 / 3 + f02 * f20 * f12 / delta,
g * f12 / 3 + f13 * f13 * f21 / delta,
g * f21 / 3 + f20 * f20 * f12 / delta,
g * f30 / 3 + f31 * f13 * f21 / delta])
if n3 > n2:
s = slice(n2, n3)
x = energies[s] - e3
f03 = x / (e0 - e3)
f13 = x / (e1 - e3)
f23 = x / (e2 - e3)
f30 = 1 - f03
f31 = 1 - f13
f32 = 1 - f23
g = f03 * f13 / (e3 - e2)
dos[:, s] += w.T.dot([f03,
f13,
f23,
f30 + f31 + f32]) * g
def ltidos(*args, **kwargs):
raise DeprecationWarning('Please use linear_tetrahedron_integration().')