"""Quantum ESPRESSO Calculator
export ASE_ESPRESSO_COMMAND="/path/to/pw.x -in PREFIX.pwi > PREFIX.pwo"
Run pw.x jobs.
"""
import warnings
from ase import io
from ase.calculators.calculator import FileIOCalculator, PropertyNotPresent
error_template = 'Property "%s" not available. Please try running Quantum\n' \
'Espresso first by calling Atoms.get_potential_energy().'
warn_template = 'Property "%s" is None. Typically, this is because the ' \
'required information has not been printed by Quantum ' \
'Espresso at a "low" verbosity level (the default). ' \
'Please try running Quantum Espresso with "high" verbosity.'
[docs]class Espresso(FileIOCalculator):
"""
"""
implemented_properties = ['energy', 'forces', 'stress', 'magmoms']
command = 'pw.x -in PREFIX.pwi > PREFIX.pwo'
discard_results_on_any_change = True
def __init__(self, restart=None,
ignore_bad_restart_file=FileIOCalculator._deprecated,
label='espresso', atoms=None, **kwargs):
"""
All options for pw.x are copied verbatim to the input file, and put
into the correct section. Use ``input_data`` for parameters that are
already in a dict, all other ``kwargs`` are passed as parameters.
Accepts all the options for pw.x as given in the QE docs, plus some
additional options:
input_data: dict
A flat or nested dictionary with input parameters for pw.x
pseudopotentials: dict
A filename for each atomic species, e.g.
``{'O': 'O.pbe-rrkjus.UPF', 'H': 'H.pbe-rrkjus.UPF'}``.
A dummy name will be used if none are given.
kspacing: float
Generate a grid of k-points with this as the minimum distance,
in A^-1 between them in reciprocal space. If set to None, kpts
will be used instead.
kpts: (int, int, int), dict, or BandPath
If kpts is a tuple (or list) of 3 integers, it is interpreted
as the dimensions of a Monkhorst-Pack grid.
If ``kpts`` is set to ``None``, only the Γ-point will be included
and QE will use routines optimized for Γ-point-only calculations.
Compared to Γ-point-only calculations without this optimization
(i.e. with ``kpts=(1, 1, 1)``), the memory and CPU requirements
are typically reduced by half.
If kpts is a dict, it will either be interpreted as a path
in the Brillouin zone (*) if it contains the 'path' keyword,
otherwise it is converted to a Monkhorst-Pack grid (**).
(*) see ase.dft.kpoints.bandpath
(**) see ase.calculators.calculator.kpts2sizeandoffsets
koffset: (int, int, int)
Offset of kpoints in each direction. Must be 0 (no offset) or
1 (half grid offset). Setting to True is equivalent to (1, 1, 1).
.. note::
Set ``tprnfor=True`` and ``tstress=True`` to calculate forces and
stresses.
.. note::
Band structure plots can be made as follows:
1. Perform a regular self-consistent calculation,
saving the wave functions at the end, as well as
getting the Fermi energy:
>>> input_data = {<your input data>}
>>> calc = Espresso(input_data=input_data, ...)
>>> atoms.calc = calc
>>> atoms.get_potential_energy()
>>> fermi_level = calc.get_fermi_level()
2. Perform a non-self-consistent 'band structure' run
after updating your input_data and kpts keywords:
>>> input_data['control'].update({'calculation':'bands',
>>> 'restart_mode':'restart',
>>> 'verbosity':'high'})
>>> calc.set(kpts={<your Brillouin zone path>},
>>> input_data=input_data)
>>> calc.calculate(atoms)
3. Make the plot using the BandStructure functionality,
after setting the Fermi level to that of the prior
self-consistent calculation:
>>> bs = calc.band_structure()
>>> bs.reference = fermi_energy
>>> bs.plot()
"""
FileIOCalculator.__init__(self, restart, ignore_bad_restart_file,
label, atoms, **kwargs)
self.calc = None
def write_input(self, atoms, properties=None, system_changes=None):
FileIOCalculator.write_input(self, atoms, properties, system_changes)
io.write(self.label + '.pwi', atoms, **self.parameters)
def read_results(self):
output = io.read(self.label + '.pwo')
self.calc = output.calc
self.results = output.calc.results
def get_fermi_level(self):
if self.calc is None:
raise PropertyNotPresent(error_template % 'Fermi level')
return self.calc.get_fermi_level()
def get_ibz_k_points(self):
if self.calc is None:
raise PropertyNotPresent(error_template % 'IBZ k-points')
ibzkpts = self.calc.get_ibz_k_points()
if ibzkpts is None:
warnings.warn(warn_template % 'IBZ k-points')
return ibzkpts
def get_k_point_weights(self):
if self.calc is None:
raise PropertyNotPresent(error_template % 'K-point weights')
k_point_weights = self.calc.get_k_point_weights()
if k_point_weights is None:
warnings.warn(warn_template % 'K-point weights')
return k_point_weights
def get_eigenvalues(self, **kwargs):
if self.calc is None:
raise PropertyNotPresent(error_template % 'Eigenvalues')
eigenvalues = self.calc.get_eigenvalues(**kwargs)
if eigenvalues is None:
warnings.warn(warn_template % 'Eigenvalues')
return eigenvalues
def get_number_of_spins(self):
if self.calc is None:
raise PropertyNotPresent(error_template % 'Number of spins')
nspins = self.calc.get_number_of_spins()
if nspins is None:
warnings.warn(warn_template % 'Number of spins')
return nspins