""" This module defines a FileIOCalculator for DFTB+
http://www.dftbplus.org/
http://www.dftb.org/
Initial development: markus.kaukonen@iki.fi
"""
import os
import numpy as np
from ase.calculators.calculator import (FileIOCalculator, kpts2ndarray,
kpts2sizeandoffsets)
from ase.units import Hartree, Bohr
[docs]class Dftb(FileIOCalculator):
if 'DFTB_COMMAND' in os.environ:
command = os.environ['DFTB_COMMAND'] + ' > PREFIX.out'
else:
command = 'dftb+ > PREFIX.out'
implemented_properties = ['energy', 'forces', 'charges',
'stress', 'dipole']
discard_results_on_any_change = True
def __init__(self, restart=None,
ignore_bad_restart_file=FileIOCalculator._deprecated,
label='dftb', atoms=None, kpts=None,
slako_dir=None,
**kwargs):
"""
All keywords for the dftb_in.hsd input file (see the DFTB+ manual)
can be set by ASE. Consider the following input file block:
>>> Hamiltonian = DFTB {
>>> SCC = Yes
>>> SCCTolerance = 1e-8
>>> MaxAngularMomentum = {
>>> H = s
>>> O = p
>>> }
>>> }
This can be generated by the DFTB+ calculator by using the
following settings:
>>> calc = Dftb(Hamiltonian_='DFTB', # line is included by default
>>> Hamiltonian_SCC='Yes',
>>> Hamiltonian_SCCTolerance=1e-8,
>>> Hamiltonian_MaxAngularMomentum_='',
>>> Hamiltonian_MaxAngularMomentum_H='s',
>>> Hamiltonian_MaxAngularMomentum_O='p')
In addition to keywords specific to DFTB+, also the following keywords
arguments can be used:
restart: str
Prefix for restart file. May contain a directory.
Default is None: don't restart.
ignore_bad_restart_file: bool
Ignore broken or missing restart file. By default, it is an
error if the restart file is missing or broken.
label: str (default 'dftb')
Prefix used for the main output file (<label>.out).
atoms: Atoms object (default None)
Optional Atoms object to which the calculator will be
attached. When restarting, atoms will get its positions and
unit-cell updated from file.
kpts: (default None)
Brillouin zone sampling:
* ``(1,1,1)`` or ``None``: Gamma-point only
* ``(n1,n2,n3)``: Monkhorst-Pack grid
* ``dict``: Interpreted as a path in the Brillouin zone if
it contains the 'path_' keyword. Otherwise it is converted
into a Monkhorst-Pack grid using
``ase.calculators.calculator.kpts2sizeandoffsets``
* ``[(k11,k12,k13),(k21,k22,k23),...]``: Explicit (Nkpts x 3)
array of k-points in units of the reciprocal lattice vectors
(each with equal weight)
Additional attribute to be set by the embed() method:
pcpot: PointCharge object
An external point charge potential (for QM/MM calculations)
"""
if slako_dir is None:
slako_dir = os.environ.get('DFTB_PREFIX', './')
if not slako_dir.endswith('/'):
slako_dir += '/'
self.slako_dir = slako_dir
self.default_parameters = dict(
Hamiltonian_='DFTB',
Hamiltonian_SlaterKosterFiles_='Type2FileNames',
Hamiltonian_SlaterKosterFiles_Prefix=self.slako_dir,
Hamiltonian_SlaterKosterFiles_Separator='"-"',
Hamiltonian_SlaterKosterFiles_Suffix='".skf"',
Hamiltonian_MaxAngularMomentum_='',
Options_='',
Options_WriteResultsTag='Yes')
self.pcpot = None
self.lines = None
self.atoms = None
self.atoms_input = None
self.do_forces = False
self.outfilename = 'dftb.out'
FileIOCalculator.__init__(self, restart, ignore_bad_restart_file,
label, atoms,
**kwargs)
# Determine number of spin channels
try:
entry = kwargs['Hamiltonian_SpinPolarisation']
spinpol = 'colinear' in entry.lower()
except KeyError:
spinpol = False
self.nspin = 2 if spinpol else 1
# kpoint stuff by ase
self.kpts = kpts
self.kpts_coord = None
if self.kpts is not None:
initkey = 'Hamiltonian_KPointsAndWeights'
mp_mesh = None
offsets = None
if isinstance(self.kpts, dict):
if 'path' in self.kpts:
# kpts is path in Brillouin zone
self.parameters[initkey + '_'] = 'Klines '
self.kpts_coord = kpts2ndarray(self.kpts, atoms=atoms)
else:
# kpts is (implicit) definition of
# Monkhorst-Pack grid
self.parameters[initkey + '_'] = 'SupercellFolding '
mp_mesh, offsets = kpts2sizeandoffsets(atoms=atoms,
**self.kpts)
elif np.array(self.kpts).ndim == 1:
# kpts is Monkhorst-Pack grid
self.parameters[initkey + '_'] = 'SupercellFolding '
mp_mesh = self.kpts
offsets = [0.] * 3
elif np.array(self.kpts).ndim == 2:
# kpts is (N x 3) list/array of k-point coordinates
# each will be given equal weight
self.parameters[initkey + '_'] = ''
self.kpts_coord = np.array(self.kpts)
else:
raise ValueError('Illegal kpts definition:' + str(self.kpts))
if mp_mesh is not None:
eps = 1e-10
for i in range(3):
key = initkey + '_empty%03d' % i
val = [mp_mesh[i] if j == i else 0 for j in range(3)]
self.parameters[key] = ' '.join(map(str, val))
offsets[i] *= mp_mesh[i]
assert abs(offsets[i]) < eps or abs(offsets[i] - 0.5) < eps
# DFTB+ uses a different offset convention, where
# the k-point mesh is already Gamma-centered prior
# to the addition of any offsets
if mp_mesh[i] % 2 == 0:
offsets[i] += 0.5
key = initkey + '_empty%03d' % 3
self.parameters[key] = ' '.join(map(str, offsets))
elif self.kpts_coord is not None:
for i, c in enumerate(self.kpts_coord):
key = initkey + '_empty%09d' % i
c_str = ' '.join(map(str, c))
if 'Klines' in self.parameters[initkey + '_']:
c_str = '1 ' + c_str
else:
c_str += ' 1.0'
self.parameters[key] = c_str
def write_dftb_in(self, outfile):
""" Write the innput file for the dftb+ calculation.
Geometry is taken always from the file 'geo_end.gen'.
"""
outfile.write('Geometry = GenFormat { \n')
outfile.write(' <<< "geo_end.gen" \n')
outfile.write('} \n')
outfile.write(' \n')
params = self.parameters.copy()
s = 'Hamiltonian_MaxAngularMomentum_'
for key in params:
if key.startswith(s) and len(key) > len(s):
break
else:
# User didn't specify max angular mometa. Get them from
# the .skf files:
symbols = set(self.atoms.get_chemical_symbols())
for symbol in symbols:
path = os.path.join(self.slako_dir,
'{0}-{0}.skf'.format(symbol))
l = read_max_angular_momentum(path)
params[s + symbol] = '"{}"'.format('spdf'[l])
# --------MAIN KEYWORDS-------
previous_key = 'dummy_'
myspace = ' '
for key, value in sorted(params.items()):
current_depth = key.rstrip('_').count('_')
previous_depth = previous_key.rstrip('_').count('_')
for my_backsclash in reversed(
range(previous_depth - current_depth)):
outfile.write(3 * (1 + my_backsclash) * myspace + '} \n')
outfile.write(3 * current_depth * myspace)
if key.endswith('_') and len(value) > 0:
outfile.write(key.rstrip('_').rsplit('_')[-1] +
' = ' + str(value) + '{ \n')
elif (key.endswith('_') and (len(value) == 0)
and current_depth == 0): # E.g. 'Options {'
outfile.write(key.rstrip('_').rsplit('_')[-1] +
' ' + str(value) + '{ \n')
elif (key.endswith('_') and (len(value) == 0)
and current_depth > 0): # E.g. 'Hamiltonian_Max... = {'
outfile.write(key.rstrip('_').rsplit('_')[-1] +
' = ' + str(value) + '{ \n')
elif key.count('_empty') == 1:
outfile.write(str(value) + ' \n')
elif ((key == 'Hamiltonian_ReadInitialCharges') and
(str(value).upper() == 'YES')):
f1 = os.path.isfile(self.directory + os.sep + 'charges.dat')
f2 = os.path.isfile(self.directory + os.sep + 'charges.bin')
if not (f1 or f2):
print('charges.dat or .bin not found, switching off guess')
value = 'No'
outfile.write(key.rsplit('_')[-1] + ' = ' + str(value) + ' \n')
else:
outfile.write(key.rsplit('_')[-1] + ' = ' + str(value) + ' \n')
if self.pcpot is not None and ('DFTB' in str(value)):
outfile.write(' ElectricField = { \n')
outfile.write(' PointCharges = { \n')
outfile.write(
' CoordsAndCharges [Angstrom] = DirectRead { \n')
outfile.write(' Records = ' +
str(len(self.pcpot.mmcharges)) + ' \n')
outfile.write(
' File = "dftb_external_charges.dat" \n')
outfile.write(' } \n')
outfile.write(' } \n')
outfile.write(' } \n')
previous_key = key
current_depth = key.rstrip('_').count('_')
for my_backsclash in reversed(range(current_depth)):
outfile.write(3 * my_backsclash * myspace + '} \n')
outfile.write('ParserOptions { \n')
outfile.write(' IgnoreUnprocessedNodes = Yes \n')
outfile.write('} \n')
if self.do_forces:
outfile.write('Analysis { \n')
outfile.write(' CalculateForces = Yes \n')
outfile.write('} \n')
def check_state(self, atoms):
system_changes = FileIOCalculator.check_state(self, atoms)
# Ignore unit cell for molecules:
if not atoms.pbc.any() and 'cell' in system_changes:
system_changes.remove('cell')
if self.pcpot and self.pcpot.mmpositions is not None:
system_changes.append('positions')
return system_changes
def write_input(self, atoms, properties=None, system_changes=None):
from ase.io import write
if properties is not None:
if 'forces' in properties or 'stress' in properties:
self.do_forces = True
FileIOCalculator.write_input(
self, atoms, properties, system_changes)
with open(os.path.join(self.directory, 'dftb_in.hsd'), 'w') as fd:
self.write_dftb_in(fd)
write(os.path.join(self.directory, 'geo_end.gen'), atoms,
parallel=False)
# self.atoms is none until results are read out,
# then it is set to the ones at writing input
self.atoms_input = atoms
self.atoms = None
if self.pcpot:
self.pcpot.write_mmcharges('dftb_external_charges.dat')
def read_results(self):
""" all results are read from results.tag file
It will be destroyed after it is read to avoid
reading it once again after some runtime error """
with open(os.path.join(self.directory, 'results.tag'), 'r') as fd:
self.lines = fd.readlines()
self.atoms = self.atoms_input
charges, energy, dipole = self.read_charges_energy_dipole()
if charges is not None:
self.results['charges'] = charges
self.results['energy'] = energy
if dipole is not None:
self.results['dipole'] = dipole
if self.do_forces:
forces = self.read_forces()
self.results['forces'] = forces
self.mmpositions = None
# stress stuff begins
sstring = 'stress'
have_stress = False
stress = list()
for iline, line in enumerate(self.lines):
if sstring in line:
have_stress = True
start = iline + 1
end = start + 3
for i in range(start, end):
cell = [float(x) for x in self.lines[i].split()]
stress.append(cell)
if have_stress:
stress = -np.array(stress) * Hartree / Bohr**3
self.results['stress'] = stress.flat[[0, 4, 8, 5, 2, 1]]
# stress stuff ends
# eigenvalues and fermi levels
fermi_levels = self.read_fermi_levels()
if fermi_levels is not None:
self.results['fermi_levels'] = fermi_levels
eigenvalues = self.read_eigenvalues()
if eigenvalues is not None:
self.results['eigenvalues'] = eigenvalues
# calculation was carried out with atoms written in write_input
os.remove(os.path.join(self.directory, 'results.tag'))
def read_forces(self):
"""Read Forces from dftb output file (results.tag)."""
from ase.units import Hartree, Bohr
# Initialise the indices so their scope
# reaches outside of the for loop
index_force_begin = -1
index_force_end = -1
# Force line indexes
for iline, line in enumerate(self.lines):
fstring = 'forces '
if line.find(fstring) >= 0:
index_force_begin = iline + 1
line1 = line.replace(':', ',')
index_force_end = iline + 1 + \
int(line1.split(',')[-1])
break
gradients = []
for j in range(index_force_begin, index_force_end):
word = self.lines[j].split()
gradients.append([float(word[k]) for k in range(0, 3)])
return np.array(gradients) * Hartree / Bohr
def read_charges_energy_dipole(self):
"""Get partial charges on atoms
in case we cannot find charges they are set to None
"""
with open(os.path.join(self.directory, 'detailed.out'), 'r') as fd:
lines = fd.readlines()
for line in lines:
if line.strip().startswith('Total energy:'):
energy = float(line.split()[2]) * Hartree
break
qm_charges = []
for n, line in enumerate(lines):
if ('Atom' and 'Charge' in line):
chargestart = n + 1
break
else:
# print('Warning: did not find DFTB-charges')
# print('This is ok if flag SCC=No')
return None, energy, None
lines1 = lines[chargestart:(chargestart + len(self.atoms))]
for line in lines1:
qm_charges.append(float(line.split()[-1]))
dipole = None
for line in lines:
if 'Dipole moment:' in line and 'au' in line:
words = line.split()
dipole = np.array(
[float(w) for w in words[-4:-1]]) * Bohr
return np.array(qm_charges), energy, dipole
def get_charges(self, atoms):
""" Get the calculated charges
this is inhereted to atoms object """
if 'charges' in self.results:
return self.results['charges']
else:
return None
def read_eigenvalues(self):
""" Read Eigenvalues from dftb output file (results.tag).
Unfortunately, the order seems to be scrambled. """
# Eigenvalue line indexes
index_eig_begin = None
for iline, line in enumerate(self.lines):
fstring = 'eigenvalues '
if line.find(fstring) >= 0:
index_eig_begin = iline + 1
line1 = line.replace(':', ',')
ncol, nband, nkpt, nspin = map(int, line1.split(',')[-4:])
break
else:
return None
# Take into account that the last row may lack
# columns if nkpt * nspin * nband % ncol != 0
nrow = int(np.ceil(nkpt * nspin * nband * 1. / ncol))
index_eig_end = index_eig_begin + nrow
ncol_last = len(self.lines[index_eig_end - 1].split())
self.lines[index_eig_end - 1] += ' 0.0 ' * (ncol - ncol_last)
eig = np.loadtxt(self.lines[index_eig_begin:index_eig_end]).flatten()
eig *= Hartree
N = nkpt * nband
eigenvalues = [eig[i * N:(i + 1) * N].reshape((nkpt, nband))
for i in range(nspin)]
return eigenvalues
def read_fermi_levels(self):
""" Read Fermi level(s) from dftb output file (results.tag). """
# Fermi level line indexes
for iline, line in enumerate(self.lines):
fstring = 'fermi_level '
if line.find(fstring) >= 0:
index_fermi = iline + 1
break
else:
return None
fermi_levels = []
words = self.lines[index_fermi].split()
assert len(words) in [1, 2], 'Expected either 1 or 2 Fermi levels'
for word in words:
e = float(word)
# In non-spin-polarized calculations with DFTB+ v17.1,
# two Fermi levels are given, with the second one being 0,
# but we don't want to add that one to the list
if abs(e) > 1e-8:
fermi_levels.append(e)
return np.array(fermi_levels) * Hartree
def get_ibz_k_points(self):
return self.kpts_coord.copy()
def get_number_of_spins(self):
return self.nspin
def get_eigenvalues(self, kpt=0, spin=0):
return self.results['eigenvalues'][spin][kpt].copy()
def get_fermi_levels(self):
return self.results['fermi_levels'].copy()
def get_fermi_level(self):
return max(self.get_fermi_levels())
def embed(self, mmcharges=None, directory='./'):
"""Embed atoms in point-charges (mmcharges)
"""
self.pcpot = PointChargePotential(mmcharges, self.directory)
return self.pcpot
class PointChargePotential:
def __init__(self, mmcharges, directory='./'):
"""Point-charge potential for DFTB+.
"""
self.mmcharges = mmcharges
self.directory = directory
self.mmpositions = None
self.mmforces = None
def set_positions(self, mmpositions):
self.mmpositions = mmpositions
def set_charges(self, mmcharges):
self.mmcharges = mmcharges
def write_mmcharges(self, filename):
""" mok all
write external charges as monopoles for dftb+.
"""
if self.mmcharges is None:
print("DFTB: Warning: not writing exernal charges ")
return
with open(os.path.join(self.directory, filename), 'w') as charge_file:
for [pos, charge] in zip(self.mmpositions, self.mmcharges):
[x, y, z] = pos
charge_file.write('%12.6f %12.6f %12.6f %12.6f \n'
% (x, y, z, charge))
def get_forces(self, calc, get_forces=True):
""" returns forces on point charges if the flag get_forces=True """
if get_forces:
return self.read_forces_on_pointcharges()
else:
return np.zeros_like(self.mmpositions)
def read_forces_on_pointcharges(self):
"""Read Forces from dftb output file (results.tag)."""
from ase.units import Hartree, Bohr
with open(os.path.join(self.directory, 'detailed.out'), 'r') as fd:
lines = fd.readlines()
external_forces = []
for n, line in enumerate(lines):
if ('Forces on external charges' in line):
chargestart = n + 1
break
else:
raise RuntimeError(
'Problem in reading forces on MM external-charges')
lines1 = lines[chargestart:(chargestart + len(self.mmcharges))]
for line in lines1:
external_forces.append(
[float(i) for i in line.split()])
return np.array(external_forces) * Hartree / Bohr
def read_max_angular_momentum(path):
"""Read maximum angular momentum from .skf file.
See dftb.org for A detailed description of the Slater-Koster file format.
"""
with open(path, 'r') as fd:
line = fd.readline()
if line[0] == '@':
# Extended format
fd.readline()
l = 3
pos = 9
else:
# Simple format:
l = 2
pos = 7
# Sometimes there ar commas, sometimes not:
line = fd.readline().replace(',', ' ')
occs = [float(f) for f in line.split()[pos:pos + l + 1]]
for f in occs:
if f > 0.0:
return l
l -= 1