Source code for ase.build.supercells

"""Helper functions for creating supercells."""

import numpy as np

from ase import Atoms


class SupercellError(Exception):
    """Use if construction of supercell fails"""


[docs]def get_deviation_from_optimal_cell_shape(cell, target_shape="sc", norm=None): r""" Calculates the deviation of the given cell metric from the ideal cell metric defining a certain shape. Specifically, the function evaluates the expression `\Delta = || Q \mathbf{h} - \mathbf{h}_{target}||_2`, where `\mathbf{h}` is the input metric (*cell*) and `Q` is a normalization factor (*norm*) while the target metric `\mathbf{h}_{target}` (via *target_shape*) represent simple cubic ('sc') or face-centered cubic ('fcc') cell shapes. Parameters: cell: 2D array of floats Metric given as a (3x3 matrix) of the input structure. target_shape: str Desired supercell shape. Can be 'sc' for simple cubic or 'fcc' for face-centered cubic. norm: float Specify the normalization factor. This is useful to avoid recomputing the normalization factor when computing the deviation for a series of P matrices. """ if target_shape in ["sc", "simple-cubic"]: target_metric = np.eye(3) elif target_shape in ["fcc", "face-centered cubic"]: target_metric = 0.5 * np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]) if not norm: norm = (np.linalg.det(cell) / np.linalg.det(target_metric)) ** ( -1.0 / 3 ) return np.linalg.norm(norm * cell - target_metric)
[docs]def find_optimal_cell_shape( cell, target_size, target_shape, lower_limit=-2, upper_limit=2, verbose=False, ): """Returns the transformation matrix that produces a supercell corresponding to *target_size* unit cells with metric *cell* that most closely approximates the shape defined by *target_shape*. Parameters: cell: 2D array of floats Metric given as a (3x3 matrix) of the input structure. target_size: integer Size of desired super cell in number of unit cells. target_shape: str Desired supercell shape. Can be 'sc' for simple cubic or 'fcc' for face-centered cubic. lower_limit: int Lower limit of search range. upper_limit: int Upper limit of search range. verbose: bool Set to True to obtain additional information regarding construction of transformation matrix. """ # Set up target metric if target_shape in ["sc", "simple-cubic"]: target_metric = np.eye(3) elif target_shape in ["fcc", "face-centered cubic"]: target_metric = 0.5 * np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]], dtype=float ) if verbose: print("target metric (h_target):") print(target_metric) # Normalize cell metric to reduce computation time during looping norm = ( target_size * np.linalg.det(cell) / np.linalg.det(target_metric) ) ** (-1.0 / 3) norm_cell = norm * cell if verbose: print("normalization factor (Q): %g" % norm) # Approximate initial P matrix ideal_P = np.dot(target_metric, np.linalg.inv(norm_cell)) if verbose: print("idealized transformation matrix:") print(ideal_P) starting_P = np.array(np.around(ideal_P, 0), dtype=int) if verbose: print("closest integer transformation matrix (P_0):") print(starting_P) # Prepare run. from itertools import product best_score = 1e6 optimal_P = None for dP in product(range(lower_limit, upper_limit + 1), repeat=9): dP = np.array(dP, dtype=int).reshape(3, 3) P = starting_P + dP if int(np.around(np.linalg.det(P), 0)) != target_size: continue score = get_deviation_from_optimal_cell_shape( np.dot(P, norm_cell), target_shape=target_shape, norm=1.0 ) if score < best_score: best_score = score optimal_P = P if optimal_P is None: print("Failed to find a transformation matrix.") return None # Finalize. if verbose: print("smallest score (|Q P h_p - h_target|_2): %f" % best_score) print("optimal transformation matrix (P_opt):") print(optimal_P) print("supercell metric:") print(np.round(np.dot(optimal_P, cell), 4)) print( "determinant of optimal transformation matrix: %g" % np.linalg.det(optimal_P) ) return optimal_P
[docs]def make_supercell(prim, P, wrap=True, tol=1e-5): r"""Generate a supercell by applying a general transformation (*P*) to the input configuration (*prim*). The transformation is described by a 3x3 integer matrix `\mathbf{P}`. Specifically, the new cell metric `\mathbf{h}` is given in terms of the metric of the input configuration `\mathbf{h}_p` by `\mathbf{P h}_p = \mathbf{h}`. Parameters: prim: ASE Atoms object Input configuration. P: 3x3 integer matrix Transformation matrix `\mathbf{P}`. wrap: bool wrap in the end tol: float tolerance for wrapping """ supercell_matrix = P supercell = clean_matrix(supercell_matrix @ prim.cell) # cartesian lattice points lattice_points_frac = lattice_points_in_supercell(supercell_matrix) lattice_points = np.dot(lattice_points_frac, supercell) superatoms = Atoms(cell=supercell, pbc=prim.pbc) for lp in lattice_points: shifted_atoms = prim.copy() shifted_atoms.positions += lp superatoms.extend(shifted_atoms) # check number of atoms is correct n_target = int(np.round(np.linalg.det(supercell_matrix) * len(prim))) if n_target != len(superatoms): msg = "Number of atoms in supercell: {}, expected: {}".format( n_target, len(superatoms) ) raise SupercellError(msg) if wrap: superatoms.wrap(eps=tol) return superatoms
def lattice_points_in_supercell(supercell_matrix): """Find all lattice points contained in a supercell. Adapted from pymatgen, which is available under MIT license: The MIT License (MIT) Copyright (c) 2011-2012 MIT & The Regents of the University of California, through Lawrence Berkeley National Laboratory """ diagonals = np.array( [ [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ] ) d_points = np.dot(diagonals, supercell_matrix) mins = np.min(d_points, axis=0) maxes = np.max(d_points, axis=0) + 1 ar = np.arange(mins[0], maxes[0])[:, None] * np.array([1, 0, 0])[None, :] br = np.arange(mins[1], maxes[1])[:, None] * np.array([0, 1, 0])[None, :] cr = np.arange(mins[2], maxes[2])[:, None] * np.array([0, 0, 1])[None, :] all_points = ar[:, None, None] + br[None, :, None] + cr[None, None, :] all_points = all_points.reshape((-1, 3)) frac_points = np.dot(all_points, np.linalg.inv(supercell_matrix)) tvects = frac_points[ np.all(frac_points < 1 - 1e-10, axis=1) & np.all(frac_points >= -1e-10, axis=1) ] assert len(tvects) == round(abs(np.linalg.det(supercell_matrix))) return tvects def clean_matrix(matrix, eps=1e-12): """ clean from small values""" matrix = np.array(matrix) for ij in np.ndindex(matrix.shape): if abs(matrix[ij]) < eps: matrix[ij] = 0 return matrix