Source code for ase.autoneb

from ase.io import Trajectory
from ase.io import read
from ase.neb import NEB
from ase.optimize import BFGS
from ase.optimize import FIRE
from ase.calculators.singlepoint import SinglePointCalculator
import ase.parallel as mpi
import numpy as np
import shutil
import os
import types
from math import log
from math import exp
from contextlib import ExitStack


[docs]class AutoNEB: """AutoNEB object. The AutoNEB algorithm streamlines the execution of NEB and CI-NEB calculations following the algorithm described in: E. L. Kolsbjerg, M. N. Groves, and B. Hammer, J. Chem. Phys, 145, 094107, 2016. (doi: 10.1063/1.4961868) The user supplies at minimum the two end-points and possibly also some intermediate images. The stages are: 1) Define a set of images and name them sequentially. Must at least have a relaxed starting and ending image User can supply intermediate guesses which do not need to have previously determined energies (probably from another NEB calculation with a lower level of theory) 2) AutoNEB will first evaluate the user provided intermediate images 3) AutoNEB will then add additional images dynamically until n_max is reached 4) A climbing image will attempt to locate the saddle point 5) All the images between the highest point and the starting point are further relaxed to smooth the path 6) All the images between the highest point and the ending point are further relaxed to smooth the path Step 4 and 5-6 are optional steps! Parameters: attach_calculators: Function which adds valid calculators to the list of images supplied. prefix: string All files that the AutoNEB method reads and writes are prefixed with this string n_simul: int The number of relaxations run in parallel. n_max: int The number of images along the NEB path when done. This number includes the two end-points. Important: due to the dynamic adding of images around the peak n_max must be updated if the NEB is restarted. climb: boolean Should a CI-NEB calculation be done at the top-point fmax: float or list of floats The maximum force along the NEB path maxsteps: int The maximum number of steps in each NEB relaxation. If a list is given the first number of steps is used in the build-up and final scan phase; the second number of steps is used in the CI step after all images have been inserted. k: float The spring constant along the NEB path method: str (see neb.py) Choice betweeen three method: 'aseneb', standard ase NEB implementation 'improvedtangent', published NEB implementation 'eb', full spring force implementation (default) optimizer: str Which optimizer to use in the relaxation. Valid values are 'BFGS' and 'FIRE' (default) space_energy_ratio: float The preference for new images to be added in a big energy gab with a preference around the peak or in the biggest geometric gab. A space_energy_ratio set to 1 will only considder geometric gabs while one set to 0 will result in only images for energy resolution. The AutoNEB method uses a fixed file-naming convention. The initial images should have the naming prefix000.traj, prefix001.traj, ... up until the final image in prefix00N.traj Images are dynamically added in between the first and last image until n_max images have been reached. When doing the i'th NEB optimization a set of files prefixXXXiter00i.traj exists with XXX ranging from 000 to the N images currently in the NEB. The most recent NEB path can always be monitored by: $ ase-gui -n -1 neb???.traj """ def __init__(self, attach_calculators, prefix, n_simul, n_max, iter_folder='AutoNEB_iter', fmax=0.025, maxsteps=10000, k=0.1, climb=True, method='eb', optimizer='FIRE', remove_rotation_and_translation=False, space_energy_ratio=0.5, world=None, parallel=True, smooth_curve=False, interpolate_method='idpp'): self.attach_calculators = attach_calculators self.prefix = prefix self.n_simul = n_simul self.n_max = n_max self.climb = climb self.all_images = [] self.parallel = parallel self.maxsteps = maxsteps self.fmax = fmax self.k = k self.method = method self.remove_rotation_and_translation = remove_rotation_and_translation self.space_energy_ratio = space_energy_ratio if interpolate_method not in ['idpp', 'linear']: self.interpolate_method = 'idpp' print('Interpolation method not implementet.', 'Using the IDPP method.') else: self.interpolate_method = interpolate_method if world is None: world = mpi.world self.world = world self.smooth_curve = smooth_curve if optimizer == 'BFGS': self.optimizer = BFGS elif optimizer == 'FIRE': self.optimizer = FIRE else: raise Exception('Optimizer needs to be BFGS or FIRE') self.iter_folder = iter_folder if not os.path.exists(self.iter_folder) and self.world.rank == 0: os.makedirs(self.iter_folder) def execute_one_neb(self, n_cur, to_run, climb=False, many_steps=False): with ExitStack() as exitstack: self._execute_one_neb(exitstack, n_cur, to_run, climb=climb, many_steps=many_steps) def _execute_one_neb(self, exitstack, n_cur, to_run, climb=False, many_steps=False): '''Internal method which executes one NEB optimization.''' closelater = exitstack.enter_context self.iteration += 1 # First we copy around all the images we are not using in this # neb (for reproducability purposes) if self.world.rank == 0: for i in range(n_cur): if i not in to_run[1: -1]: filename = '%s%03d.traj' % (self.prefix, i) with Trajectory(filename, mode='w', atoms=self.all_images[i]) as traj: traj.write() filename_ref = self.iter_folder + \ '/%s%03diter%03d.traj' % (self.prefix, i, self.iteration) if os.path.isfile(filename): shutil.copy2(filename, filename_ref) if self.world.rank == 0: print('Now starting iteration %d on ' % self.iteration, to_run) # Attach calculators to all the images we will include in the NEB self.attach_calculators([self.all_images[i] for i in to_run[1: -1]]) neb = NEB([self.all_images[i] for i in to_run], k=[self.k[i] for i in to_run[0:-1]], method=self.method, parallel=self.parallel, remove_rotation_and_translation=self .remove_rotation_and_translation, climb=climb) # Do the actual NEB calculation qn = closelater( self.optimizer(neb, logfile=self.iter_folder + '/%s_log_iter%03d.log' % (self.prefix, self.iteration)) ) # Find the ranks which are masters for each their calculation if self.parallel: nneb = to_run[0] nim = len(to_run) - 2 n = self.world.size // nim # number of cpu's per image j = 1 + self.world.rank // n # my image number assert nim * n == self.world.size traj = closelater(Trajectory( '%s%03d.traj' % (self.prefix, j + nneb), 'w', self.all_images[j + nneb], master=(self.world.rank % n == 0) )) filename_ref = self.iter_folder + \ '/%s%03diter%03d.traj' % (self.prefix, j + nneb, self.iteration) trajhist = closelater(Trajectory( filename_ref, 'w', self.all_images[j + nneb], master=(self.world.rank % n == 0) )) qn.attach(traj) qn.attach(trajhist) else: num = 1 for i, j in enumerate(to_run[1: -1]): filename_ref = self.iter_folder + \ '/%s%03diter%03d.traj' % (self.prefix, j, self.iteration) trajhist = closelater(Trajectory( filename_ref, 'w', self.all_images[j] )) qn.attach(seriel_writer(trajhist, i, num).write) traj = closelater(Trajectory( '%s%03d.traj' % (self.prefix, j), 'w', self.all_images[j] )) qn.attach(seriel_writer(traj, i, num).write) num += 1 if isinstance(self.maxsteps, (list, tuple)) and many_steps: steps = self.maxsteps[1] elif isinstance(self.maxsteps, (list, tuple)) and not many_steps: steps = self.maxsteps[0] else: steps = self.maxsteps if isinstance(self.fmax, (list, tuple)) and many_steps: fmax = self.fmax[1] elif isinstance(self.fmax, (list, tuple)) and not many_steps: fmax = self.fmax[0] else: fmax = self.fmax qn.run(fmax=fmax, steps=steps) # Remove the calculators and replace them with single # point calculators and update all the nodes for # preperration for next iteration neb.distribute = types.MethodType(store_E_and_F_in_spc, neb) neb.distribute() def run(self): '''Run the AutoNEB optimization algorithm.''' n_cur = self.__initialize__() while len(self.all_images) < self.n_simul + 2: if isinstance(self.k, (float, int)): self.k = [self.k] * (len(self.all_images) - 1) if self.world.rank == 0: print('Now adding images for initial run') # Insert a new image where the distance between two images is # the largest spring_lengths = [] for j in range(n_cur - 1): spring_vec = self.all_images[j + 1].get_positions() - \ self.all_images[j].get_positions() spring_lengths.append(np.linalg.norm(spring_vec)) jmax = np.argmax(spring_lengths) if self.world.rank == 0: print('Max length between images is at ', jmax) # The interpolation used to make initial guesses # If only start and end images supplied make all img at ones if len(self.all_images) == 2: n_between = self.n_simul else: n_between = 1 toInterpolate = [self.all_images[jmax]] for i in range(n_between): toInterpolate += [toInterpolate[0].copy()] toInterpolate += [self.all_images[jmax + 1]] neb = NEB(toInterpolate) neb.interpolate(method=self.interpolate_method) tmp = self.all_images[:jmax + 1] tmp += toInterpolate[1:-1] tmp.extend(self.all_images[jmax + 1:]) self.all_images = tmp # Expect springs to be in equilibrium k_tmp = self.k[:jmax] k_tmp += [self.k[jmax] * (n_between + 1)] * (n_between + 1) k_tmp.extend(self.k[jmax + 1:]) self.k = k_tmp # Run the NEB calculation with the new image included n_cur += n_between # Determine if any images do not have a valid energy yet energies = self.get_energies() n_non_valid_energies = len([e for e in energies if e != e]) if self.world.rank == 0: print('Start of evaluation of the initial images') while n_non_valid_energies != 0: if isinstance(self.k, (float, int)): self.k = [self.k] * (len(self.all_images) - 1) # First do one run since some energie are non-determined to_run, climb_safe = self.which_images_to_run_on() self.execute_one_neb(n_cur, to_run, climb=False) energies = self.get_energies() n_non_valid_energies = len([e for e in energies if e != e]) if self.world.rank == 0: print('Finished initialisation phase.') # Then add one image at a time until we have n_max images while n_cur < self.n_max: if isinstance(self.k, (float, int)): self.k = [self.k] * (len(self.all_images) - 1) # Insert a new image where the distance between two images # is the largest OR where a higher energy reselution is needed if self.world.rank == 0: print('****Now adding another image until n_max is reached', '({0}/{1})****'.format(n_cur, self.n_max)) spring_lengths = [] for j in range(n_cur - 1): spring_vec = self.all_images[j + 1].get_positions() - \ self.all_images[j].get_positions() spring_lengths.append(np.linalg.norm(spring_vec)) total_vec = self.all_images[0].get_positions() - \ self.all_images[-1].get_positions() tl = np.linalg.norm(total_vec) fR = max(spring_lengths) / tl e = self.get_energies() ed = [] emin = min(e) enorm = max(e) - emin for j in range(n_cur - 1): delta_E = (e[j + 1] - e[j]) * (e[j + 1] + e[j] - 2 * emin) / 2 / enorm ed.append(abs(delta_E)) gR = max(ed) / enorm if fR / gR > self.space_energy_ratio: jmax = np.argmax(spring_lengths) t = 'spring length!' else: jmax = np.argmax(ed) t = 'energy difference between neighbours!' if self.world.rank == 0: print('Adding image between {0} and'.format(jmax), '{0}. New image point is selected'.format(jmax + 1), 'on the basis of the biggest ' + t) toInterpolate = [self.all_images[jmax]] toInterpolate += [toInterpolate[0].copy()] toInterpolate += [self.all_images[jmax + 1]] neb = NEB(toInterpolate) neb.interpolate(method=self.interpolate_method) tmp = self.all_images[:jmax + 1] tmp += toInterpolate[1:-1] tmp.extend(self.all_images[jmax + 1:]) self.all_images = tmp # Expect springs to be in equilibrium k_tmp = self.k[:jmax] k_tmp += [self.k[jmax] * 2] * 2 k_tmp.extend(self.k[jmax + 1:]) self.k = k_tmp # Run the NEB calculation with the new image included n_cur += 1 to_run, climb_safe = self.which_images_to_run_on() self.execute_one_neb(n_cur, to_run, climb=False) if self.world.rank == 0: print('n_max images has been reached') # Do a single climb around the top-point if requested if self.climb: if isinstance(self.k, (float, int)): self.k = [self.k] * (len(self.all_images) - 1) if self.world.rank == 0: print('****Now doing the CI-NEB calculation****') to_run, climb_safe = self.which_images_to_run_on() assert climb_safe, 'climb_safe should be true at this point!' self.execute_one_neb(n_cur, to_run, climb=True, many_steps=True) if not self.smooth_curve: return self.all_images # If a smooth_curve is requsted ajust the springs to follow two # gaussian distributions e = self.get_energies() peak = self.get_highest_energy_index() k_max = 10 d1 = np.linalg.norm(self.all_images[peak].get_positions() - self.all_images[0].get_positions()) d2 = np.linalg.norm(self.all_images[peak].get_positions() - self.all_images[-1].get_positions()) l1 = -d1 ** 2 / log(0.2) l2 = -d2 ** 2 / log(0.2) x1 = [] x2 = [] for i in range(peak): v = (self.all_images[i].get_positions() + self.all_images[i + 1].get_positions()) / 2 - \ self.all_images[0].get_positions() x1.append(np.linalg.norm(v)) for i in range(peak, len(self.all_images) - 1): v = (self.all_images[i].get_positions() + self.all_images[i + 1].get_positions()) / 2 - \ self.all_images[0].get_positions() x2.append(np.linalg.norm(v)) k_tmp = [] for x in x1: k_tmp.append(k_max * exp(-((x - d1) ** 2) / l1)) for x in x2: k_tmp.append(k_max * exp(-((x - d1) ** 2) / l2)) self.k = k_tmp # Roll back to start from the top-point if self.world.rank == 0: print('Now moving from top to start') highest_energy_index = self.get_highest_energy_index() nneb = highest_energy_index - self.n_simul - 1 while nneb >= 0: self.execute_one_neb(n_cur, range(nneb, nneb + self.n_simul + 2), climb=False) nneb -= 1 # Roll forward from the top-point until the end nneb = self.get_highest_energy_index() if self.world.rank == 0: print('Now moving from top to end') while nneb <= self.n_max - self.n_simul - 2: self.execute_one_neb(n_cur, range(nneb, nneb + self.n_simul + 2), climb=False) nneb += 1 return self.all_images def __initialize__(self): '''Load files from the filesystem.''' if not os.path.isfile('%s000.traj' % self.prefix): raise IOError('No file with name %s000.traj' % self.prefix, 'was found. Should contain initial image') # Find the images that exist index_exists = [i for i in range(self.n_max) if os.path.isfile('%s%03d.traj' % (self.prefix, i))] n_cur = index_exists[-1] + 1 if self.world.rank == 0: print('The NEB initially has %d images ' % len(index_exists), '(including the end-points)') if len(index_exists) == 1: raise Exception('Only a start point exists') for i in range(len(index_exists)): if i != index_exists[i]: raise Exception('Files must be ordered sequentially', 'without gaps.') if self.world.rank == 0: for i in index_exists: filename_ref = self.iter_folder + \ '/%s%03diter000.traj' % (self.prefix, i) if os.path.isfile(filename_ref): try: os.rename(filename_ref, filename_ref + '.bak') except IOError: pass filename = '%s%03d.traj' % (self.prefix, i) try: shutil.copy2(filename, filename_ref) except IOError: pass # Wait for file system on all nodes is syncronized self.world.barrier() # And now lets read in the configurations for i in range(n_cur): if i in index_exists: filename = '%s%03d.traj' % (self.prefix, i) newim = read(filename) self.all_images.append(newim) else: self.all_images.append(self.all_images[0].copy()) self.iteration = 0 return n_cur def get_energies(self): """Utility method to extract all energies and insert np.NaN at invalid images.""" energies = [] for a in self.all_images: try: energies.append(a.get_potential_energy()) except RuntimeError: energies.append(np.NaN) return energies def get_energies_one_image(self, image): """Utility method to extract energy of an image and return np.NaN if invalid.""" try: energy = image.get_potential_energy() except RuntimeError: energy = np.NaN return energy def get_highest_energy_index(self): """Find the index of the image with the highest energy.""" energies = self.get_energies() valid_entries = [(i, e) for i, e in enumerate(energies) if e == e] highest_energy_index = max(valid_entries, key=lambda x: x[1])[0] return highest_energy_index def which_images_to_run_on(self): """Determine which set of images to do a NEB at. The priority is to first include all images without valid energies, secondly include the highest energy image.""" n_cur = len(self.all_images) energies = self.get_energies() # Find out which image is the first one missing the energy and # which is the last one missing the energy first_missing = n_cur last_missing = 0 n_missing = 0 for i in range(1, n_cur - 1): if energies[i] != energies[i]: n_missing += 1 first_missing = min(first_missing, i) last_missing = max(last_missing, i) highest_energy_index = self.get_highest_energy_index() nneb = highest_energy_index - 1 - self.n_simul // 2 nneb = max(nneb, 0) nneb = min(nneb, n_cur - self.n_simul - 2) nneb = min(nneb, first_missing - 1) nneb = max(nneb + self.n_simul, last_missing) - self.n_simul to_use = range(nneb, nneb + self.n_simul + 2) while self.get_energies_one_image(self.all_images[to_use[0]]) != \ self.get_energies_one_image(self.all_images[to_use[0]]): to_use[0] -= 1 while self.get_energies_one_image(self.all_images[to_use[-1]]) != \ self.get_energies_one_image(self.all_images[to_use[-1]]): to_use[-1] += 1 return to_use, (highest_energy_index in to_use[1: -1])
class seriel_writer: def __init__(self, traj, i, num): self.traj = traj self.i = i self.num = num def write(self): if self.num % (self.i + 1) == 0: self.traj.write() def store_E_and_F_in_spc(self): """Collect the energies and forces on all nodes and store as single point calculators""" # Make sure energies and forces are known on all nodes self.get_forces() images = self.images if self.parallel: energy = np.empty(1) forces = np.empty((self.natoms, 3)) for i in range(1, self.nimages - 1): # Determine which node is the leading for image i root = (i - 1) * self.world.size // (self.nimages - 2) # If on this node, extract the calculated numbers if self.world.rank == root: energy[0] = images[i].get_potential_energy() forces = images[i].get_forces() # Distribute these numbers to other nodes self.world.broadcast(energy, root) self.world.broadcast(forces, root) # On all nodes, remove the calculator, keep only energy # and force in single point calculator self.images[i].calc = SinglePointCalculator( self.images[i], energy=energy[0], forces=forces)