Source code for arrayfire.statistics

#######################################################
# Copyright (c) 2015, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

"""
Statistical algorithms (mean, var, stdev, etc).
"""

from .library import *
from .array import *

[docs]def mean(a, weights=None, dim=None): if dim is not None: out = Array() if weights is None: safe_call(backend.get().af_mean(ct.pointer(out.arr), a.arr, ct.c_int(dim))) else: safe_call(backend.get().af_mean_weighted(ct.pointer(out.arr), a.arr, weights.arr, ct.c_int(dim))) return out else: real = ct.c_double(0) imag = ct.c_double(0) if weights is None: safe_call(backend.get().af_mean_all(ct.pointer(real), ct.pointer(imag), a.arr)) else: safe_call(backend.get().af_mean_all_weighted(ct.pointer(real), ct.pointer(imag), a.arr, weights.arr)) real = real.value imag = imag.value return real if imag == 0 else real + imag * 1j
[docs]def var(a, isbiased=False, weights=None, dim=None): if dim is not None: out = Array() if weights is None: safe_call(backend.get().af_var(ct.pointer(out.arr), a.arr, isbiased, ct.c_int(dim))) else: safe_call(backend.get().af_var_weighted(ct.pointer(out.arr), a.arr, weights.arr, ct.c_int(dim))) return out else: real = ct.c_double(0) imag = ct.c_double(0) if weights is None: safe_call(backend.get().af_var_all(ct.pointer(real), ct.pointer(imag), a.arr, isbiased)) else: safe_call(backend.get().af_var_all_weighted(ct.pointer(real), ct.pointer(imag), a.arr, weights.arr)) real = real.value imag = imag.value return real if imag == 0 else real + imag * 1j
[docs]def stdev(a, dim=None): if dim is not None: out = Array() safe_call(backend.get().af_stdev(ct.pointer(out.arr), a.arr, ct.c_int(dim))) return out else: real = ct.c_double(0) imag = ct.c_double(0) safe_call(backend.get().af_stdev_all(ct.pointer(real), ct.pointer(imag), a.arr)) real = real.value imag = imag.value return real if imag == 0 else real + imag * 1j
[docs]def cov(a, isbiased=False, dim=None): if dim is not None: out = Array() safe_call(backend.get().af_cov(ct.pointer(out.arr), a.arr, isbiased, ct.c_int(dim))) return out else: real = ct.c_double(0) imag = ct.c_double(0) safe_call(backend.get().af_cov_all(ct.pointer(real), ct.pointer(imag), a.arr, isbiased)) real = real.value imag = imag.value return real if imag == 0 else real + imag * 1j
[docs]def median(a, dim=None): if dim is not None: out = Array() safe_call(backend.get().af_median(ct.pointer(out.arr), a.arr, ct.c_int(dim))) return out else: real = ct.c_double(0) imag = ct.c_double(0) safe_call(backend.get().af_median_all(ct.pointer(real), ct.pointer(imag), a.arr)) real = real.value imag = imag.value return real if imag == 0 else real + imag * 1j
[docs]def corrcoef(x, y): real = ct.c_double(0) imag = ct.c_double(0) safe_call(backend.get().af_corrcoef(ct.pointer(real), ct.pointer(imag), x.arr, y.arr)) real = real.value imag = imag.value return real if imag == 0 else real + imag * 1j