Warning
Please be advised that the reference documentation discussing pybind11 internals is currently incomplete. Please refer to the previous sections and the pybind11 header files for the nitty gritty details.
Reference¶
Macros¶
-
PYBIND11_MODULE(name, variable)¶
This macro creates the entry point that will be invoked when the Python interpreter imports an extension module. The module name is given as the fist argument and it should not be in quotes. The second macro argument defines a variable of type
py::module_
which can be used to initialize the module.The entry point is marked as “maybe unused” to aid dead-code detection analysis: since the entry point is typically only looked up at runtime and not referenced during translation, it would otherwise appear as unused (“dead”) code.
PYBIND11_MODULE(example, m) { m.doc() = "pybind11 example module"; // Add bindings here m.def("foo", []() { return "Hello, World!"; }); }
Convenience classes for arbitrary Python types¶
Common member functions¶
-
template<typename Derived>
class object_api : public pyobject_tag¶ A mixin class which adds common functions to
handle
,object
and various accessors. The only requirement forDerived
is to implementPyObject *Derived::ptr() const
.Public Functions
-
iterator begin() const¶
Return an iterator equivalent to calling
iter()
in Python. The object must be a collection which supports the iteration protocol.
-
iterator end() const¶
Return a sentinel which ends iteration.
-
item_accessor operator[](handle key) const¶
Return an internal functor to invoke the object’s sequence protocol. Casting the returned
detail::item_accessor
instance to ahandle
orobject
subclass causes a corresponding call to__getitem__
. Assigning ahandle
orobject
subclass causes a call to__setitem__
.
-
item_accessor operator[](object &&key) const¶
See above (the only difference is that the key’s reference is stolen)
-
item_accessor operator[](const char *key) const¶
See above (the only difference is that the key is provided as a string literal)
-
obj_attr_accessor attr(handle key) const¶
Return an internal functor to access the object’s attributes. Casting the returned
detail::obj_attr_accessor
instance to ahandle
orobject
subclass causes a corresponding call togetattr
. Assigning ahandle
orobject
subclass causes a call tosetattr
.
-
obj_attr_accessor attr(object &&key) const¶
See above (the only difference is that the key’s reference is stolen)
-
str_attr_accessor attr(const char *key) const¶
See above (the only difference is that the key is provided as a string literal)
-
args_proxy operator*() const¶
Matches * unpacking in Python, e.g. to unpack arguments out of a
tuple
orlist
for a function call. Applying another * to the result yields ** unpacking, e.g. to unpack a dict as function keyword arguments. See Calling Python functions.
-
template<typename T>
bool contains(T &&item) const¶ Check if the given item is contained within this object, i.e.
item in obj
.
-
template<return_value_policy policy = return_value_policy::automatic_reference, typename ...Args>
object operator()(Args&&... args) const¶ Assuming the Python object is a function or implements the
__call__
protocol,operator()
invokes the underlying function, passing an arbitrary set of parameters. The result is returned as aobject
and may need to be converted back into a Python object usinghandle::cast()
.When some of the arguments cannot be converted to Python objects, the function will throw a
cast_error
exception. When the Python function call fails, aerror_already_set
exception is thrown.
-
inline bool is(object_api const &other) const¶
Equivalent to
obj is other
in Python.
-
inline bool is_none() const¶
Equivalent to
obj is None
in Python.
-
inline bool equal(object_api const &other) const¶
Equivalent to obj == other in Python.
-
str_attr_accessor doc() const¶
Get or set the object’s docstring, i.e.
obj.__doc__
.
-
inline int ref_count() const¶
Return the object’s current reference count.
-
iterator begin() const¶
Without reference counting¶
-
class handle : public detail::object_api<handle>¶
Holds a reference to a Python object (no reference counting)
The
handle
class is a thin wrapper around an arbitrary Python object (i.e. aPyObject *
in Python’s C API). It does not perform any automatic reference counting and merely provides a basic C++ interface to various Python API functions.Subclassed by args_proxy, kwargs_proxy, object
Public Functions
-
handle() = default¶
The default constructor creates a handle with a
nullptr
-valued pointer.
-
template<typename T, detail::enable_if_t<detail::is_pyobj_ptr_or_nullptr_t<T>::value, int> = 0>
inline handle(T ptr)¶ Enable implicit conversion from
PyObject *
andnullptr
. Not usinghandle(PyObject *ptr)
to avoid implicit conversion from0
.
-
template<typename T, detail::enable_if_t<detail::all_of<detail::none_of<std::is_base_of<handle, T>, detail::is_pyobj_ptr_or_nullptr_t<T>>, std::is_convertible<T, PyObject*>>::value, int> = 0>
inline handle(T &obj)¶ Enable implicit conversion through
T::operator PyObject *()
.
-
inline PyObject *ptr() const¶
Return the underlying
PyObject *
pointer.
-
inline const handle &inc_ref() const &¶
Manually increase the reference count of the Python object. Usually, it is preferable to use the
object
class which derives fromhandle
and calls this function automatically. Returns a reference to itself.
-
inline const handle &dec_ref() const &¶
Manually decrease the reference count of the Python object. Usually, it is preferable to use the
object
class which derives fromhandle
and calls this function automatically. Returns a reference to itself.
-
template<typename T>
T cast() const¶ Attempt to cast the Python object into the given C++ type. A
cast_error
will be throw upon failure.
-
inline explicit operator bool() const¶
Return
true
when thehandle
wraps a valid Python object.
-
handle() = default¶
With reference counting¶
-
class object : public handle¶
Holds a reference to a Python object (with reference counting)
Like
handle
, theobject
class is a thin wrapper around an arbitrary Python object (i.e. aPyObject *
in Python’s C API). In contrast tohandle
, it optionally increases the object’s reference count upon construction, and it always decreases the reference count when theobject
instance goes out of scope and is destructed. When usingobject
instances consistently, it is much easier to get reference counting right at the first attempt.Subclassed by anyset, bool_, buffer, bytearray, bytes, capsule, dict, dtype, ellipsis, exception< type >, float_, function, generic_type, int_, iterable, iterator, list, memoryview, module_, none, sequence, slice, staticmethod, str, tuple, type, weakref
Public Functions
-
inline object(object &&other) noexcept¶
Move constructor; steals the object from
other
and preserves its reference count.
-
inline ~object()¶
Destructor; automatically calls
handle::dec_ref()
-
inline object(object &&other) noexcept¶
-
template<typename T>
T reinterpret_borrow(handle h)¶ Declare that a
handle
orPyObject *
is a certain type and borrow the reference. The target typeT
must beobject
or one of its derived classes. The function doesn’t do any conversions or checks. It’s up to the user to make sure that the target type is correct.PyObject *p = PyList_GetItem(obj, index); py::object o = reinterpret_borrow<py::object>(p); // or py::tuple t = reinterpret_borrow<py::tuple>(p); // <-- `p` must be already be a `tuple`
-
template<typename T>
T reinterpret_steal(handle h)¶ Like
reinterpret_borrow()
, but steals the reference.PyObject *p = PyObject_Str(obj); py::str s = reinterpret_steal<py::str>(p); // <-- `p` must be already be a `str`
Convenience classes for specific Python types¶
-
class module_ : public object¶
Wrapper for Python extension modules.
Public Functions
-
inline explicit module_(const char *name, const char *doc = nullptr)¶
Create a new top-level Python module with the given name and docstring.
-
template<typename Func, typename ...Extra>
inline module_ &def(const char *name_, Func &&f, const Extra&... extra)¶ Create Python binding for a new function within the module scope.
Func
can be a plain C++ function, a function pointer, or a lambda function. For details on theExtra&& ... extra
argument, see section Passing extra arguments to def or class_.
-
inline module_ def_submodule(const char *name, const char *doc = nullptr)¶
Create and return a new Python submodule with the given name and docstring. This also works recursively, i.e.
py::module_ m("example", "pybind11 example plugin"); py::module_ m2 = m.def_submodule("sub", "A submodule of 'example'"); py::module_ m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");
-
inline void reload()¶
Reload the module or throws
error_already_set
.
-
inline void add_object(const char *name, handle obj, bool overwrite = false)¶
Adds an object to the module using the given name. Throws if an object with the given name already exists.
overwrite
should almost always be false: attempting to overwrite objects that pybind11 has established will, in most cases, break things.
Public Static Functions
-
static inline module_ import(const char *name)¶
Import and return a module or throws
error_already_set
.
-
inline explicit module_(const char *name, const char *doc = nullptr)¶
Convenience functions converting to Python types¶
-
template<return_value_policy policy = return_value_policy::automatic_reference, typename ...Args>
tuple make_tuple(Args&&... args_)¶
-
template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename Sentinel, typename ValueType = typename detail::iterator_access<Iterator>::result_type, typename ...Extra>
iterator make_iterator(Iterator first, Sentinel last, Extra&&... extra)¶ Makes a python iterator from a first and past-the-end C++ InputIterator.
-
template<return_value_policy Policy = return_value_policy::reference_internal, typename Type, typename ...Extra>
iterator make_iterator(Type &value, Extra&&... extra)¶ Makes an iterator over values of an stl container or other container supporting
std::begin()
/std::end()
-
template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename Sentinel, typename KeyType = typename detail::iterator_key_access<Iterator>::result_type, typename ...Extra>
iterator make_key_iterator(Iterator first, Sentinel last, Extra&&... extra)¶ Makes a python iterator over the keys (
.first
) of a iterator over pairs from a first and past-the-end InputIterator.
-
template<return_value_policy Policy = return_value_policy::reference_internal, typename Type, typename ...Extra>
iterator make_key_iterator(Type &value, Extra&&... extra)¶ Makes an iterator over the keys (
.first
) of a stl map-like container supportingstd::begin()
/std::end()
-
template<return_value_policy Policy = return_value_policy::reference_internal, typename Iterator, typename Sentinel, typename ValueType = typename detail::iterator_value_access<Iterator>::result_type, typename ...Extra>
iterator make_value_iterator(Iterator first, Sentinel last, Extra&&... extra)¶ Makes a python iterator over the values (
.second
) of a iterator over pairs from a first and past-the-end InputIterator.
Passing extra arguments to def
or class_
¶
- group annotations
-
struct is_method¶
- #include <attr.h>
Annotation for methods.
-
struct is_operator¶
- #include <attr.h>
Annotation for operators.
-
struct is_final¶
- #include <attr.h>
Annotation for classes that cannot be subclassed.
-
struct scope¶
- #include <attr.h>
Annotation for parent scope.
-
struct doc¶
- #include <attr.h>
Annotation for documentation.
-
struct name¶
- #include <attr.h>
Annotation for function names.
-
struct sibling¶
- #include <attr.h>
Annotation indicating that a function is an overload associated with a given “sibling”.
-
template<typename T>
struct base¶ - #include <attr.h>
Annotation indicating that a class derives from another given type.
-
template<size_t Nurse, size_t Patient>
struct keep_alive¶ - #include <attr.h>
Keep patient alive while nurse lives.
-
struct multiple_inheritance¶
- #include <attr.h>
Annotation indicating that a class is involved in a multiple inheritance relationship.
-
struct dynamic_attr¶
- #include <attr.h>
Annotation which enables dynamic attributes, i.e. adds
__dict__
to a class.
-
struct buffer_protocol¶
- #include <attr.h>
Annotation which enables the buffer protocol for a type.
-
struct metaclass¶
- #include <attr.h>
Annotation which requests that a special metaclass is created for a type.
-
struct custom_type_setup¶
- #include <attr.h>
Specifies a custom callback with signature
void (PyHeapTypeObject*)
that may be used to customize the Python type.The callback is invoked immediately before
PyType_Ready
.Note: This is an advanced interface, and uses of it may require changes to work with later versions of pybind11. You may wish to consult the implementation of
make_new_python_type
indetail/classes.h
to understand the context in which the callback will be run.
-
struct module_local¶
- #include <attr.h>
Annotation that marks a class as local to the module:
-
struct arithmetic¶
- #include <attr.h>
Annotation to mark enums as an arithmetic type.
-
struct prepend¶
- #include <attr.h>
Mark a function for addition at the beginning of the existing overload chain instead of the end.
-
template<typename ...Ts>
struct call_guard¶ A call policy which places one or more guard variables (
Ts...
) around the function call.For example, this definition:
m.def("foo", foo, py::call_guard<T>());
is equivalent to the following pseudocode:
m.def("foo", [](args...) { T scope_guard; return foo(args...); // forwarded arguments });
-
template<>
struct call_guard<>¶
-
struct arg_v : public arg¶
- #include <cast.h>
Annotation for arguments with values
Public Functions
-
template<typename T>
inline arg_v(const char *name, T &&x, const char *descr = nullptr)¶ Direct construction with name, default, and description.
-
template<typename T>
inline arg_v(const arg &base, T &&x, const char *descr = nullptr)¶ Called internally when invoking
py::arg("a") = value
-
inline arg_v &noconvert(bool flag = true)¶
Same as
arg::noconvert()
, but returns *this as arg_v&, not arg&.
-
template<typename T>
-
struct kw_only¶
- #include <cast.h>
Annotation indicating that all following arguments are keyword-only; the is the equivalent of an unnamed ‘*’ argument
-
struct pos_only¶
- #include <cast.h>
Annotation indicating that all previous arguments are positional-only; the is the equivalent of an unnamed ‘/’ argument (in Python 3.8)
-
struct is_method¶
Embedding the interpreter¶
-
PYBIND11_EMBEDDED_MODULE(name, variable)¶
Add a new module to the table of builtins for the interpreter. Must be defined in global scope. The first macro parameter is the name of the module (without quotes). The second parameter is the variable which will be used as the interface to add functions and classes to the module.
PYBIND11_EMBEDDED_MODULE(example, m) { // ... initialize functions and classes here m.def("foo", []() { return "Hello, World!"; }); }
-
inline void initialize_interpreter(bool init_signal_handlers = true, int argc = 0, const char *const *argv = nullptr, bool add_program_dir_to_path = true)¶
Initialize the Python interpreter. No other pybind11 or CPython API functions can be called before this is done; with the exception of
PYBIND11_EMBEDDED_MODULE
. The optionalinit_signal_handlers
parameter can be used to skip the registration of signal handlers (see the Python documentation for details). Calling this function again after the interpreter has already been initialized is a fatal error.If initializing the Python interpreter fails, then the program is terminated. (This is controlled by the CPython runtime and is an exception to pybind11’s normal behavior of throwing exceptions on errors.)
The remaining optional parameters,
argc
,argv
, andadd_program_dir_to_path
are used to populatesys.argv
andsys.path
. See thePySys_SetArgvEx
documentation for details.
-
inline void finalize_interpreter()¶
Shut down the Python interpreter. No pybind11 or CPython API functions can be called after this. In addition, pybind11 objects must not outlive the interpreter:
{ // BAD py::initialize_interpreter(); auto hello = py::str("Hello, World!"); py::finalize_interpreter(); } // <-- BOOM, hello's destructor is called after interpreter shutdown { // GOOD py::initialize_interpreter(); { // scoped auto hello = py::str("Hello, World!"); } // <-- OK, hello is cleaned up properly py::finalize_interpreter(); } { // BETTER py::scoped_interpreter guard{}; auto hello = py::str("Hello, World!"); }
Warning
The interpreter can be restarted by calling
initialize_interpreter()
again. Modules created using pybind11 can be safely re-initialized. However, Python itself cannot completely unload binary extension modules and there are several caveats with regard to interpreter restarting. All the details can be found in the CPython documentation. In short, not all interpreter memory may be freed, either due to reference cycles or user-created global data.
-
class scoped_interpreter¶
Scope guard version of
initialize_interpreter()
andfinalize_interpreter()
. This a move-only guard and only a single instance can exist.See
initialize_interpreter()
for a discussion of its constructor arguments.#include <pybind11/embed.h> int main() { py::scoped_interpreter guard{}; py::print(Hello, World!); } // <-- interpreter shutdown
Redirecting C++ streams¶
-
class scoped_ostream_redirect¶
This a move-only guard that redirects output.
#include <pybind11/iostream.h> ... { py::scoped_ostream_redirect output; std::cout << "Hello, World!"; // Python stdout } // <-- return std::cout to normal
You can explicitly pass the c++ stream and the python object, for example to guard stderr instead.
{ py::scoped_ostream_redirect output{ std::cerr, py::module::import("sys").attr("stderr")}; std::cout << "Hello, World!"; }
Subclassed by scoped_estream_redirect
-
class scoped_estream_redirect : public scoped_ostream_redirect¶
Like
scoped_ostream_redirect
, but redirects cerr by default. This class is provided primary to makepy::call_guard
easier to make.m.def("noisy_func", &noisy_func, py::call_guard<scoped_ostream_redirect, scoped_estream_redirect>());
-
inline class_<detail::OstreamRedirect> add_ostream_redirect(module_ m, const std::string &name = "ostream_redirect")¶
This is a helper function to add a C++ redirect context manager to Python instead of using a C++ guard. To use it, add the following to your binding code:
#include <pybind11/iostream.h> ... py::add_ostream_redirect(m, "ostream_redirect");
You now have a Python context manager that redirects your output:
with m.ostream_redirect(): m.print_to_cout_function()
This manager can optionally be told which streams to operate on:
with m.ostream_redirect(stdout=true, stderr=true): m.noisy_function_with_error_printing()
Python built-in functions¶
- group python_builtins
Unless stated otherwise, the following C++ functions behave the same as their Python counterparts.
Functions
-
inline dict globals()¶
Return a dictionary representing the global variables in the current execution frame, or
__main__.__dict__
if there is no frame (usually when the interpreter is embedded).
-
template<typename T, detail::enable_if_t<std::is_base_of<object, T>::value, int> = 0>
bool isinstance(handle obj)¶ Return true if
obj
is an instance ofT
. TypeT
must be a subclass ofobject
or a class which was exposed to Python aspy::class_<T>
.
-
inline dict globals()¶
Inheritance¶
See Object-oriented code and Classes for more detail.
-
PYBIND11_OVERRIDE(ret_type, cname, fn, ...)¶
Macro to populate the virtual method in the trampoline class. This macro tries to look up the method from the Python side, deals with the Global Interpreter Lock (GIL) and necessary argument conversions to call this method and return the appropriate type. This macro should be used if the method name in C and in Python are identical. See Overriding virtual functions in Python for more information.
class PyAnimal : public Animal { public: // Inherit the constructors using Animal::Animal; // Trampoline (need one for each virtual function) std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE( std::string, // Return type (ret_type) Animal, // Parent class (cname) go, // Name of function in C++ (must match Python name) (fn) n_times // Argument(s) (...) ); } };
-
PYBIND11_OVERRIDE_PURE(ret_type, cname, fn, ...)¶
Macro for pure virtual functions, this function is identical to
PYBIND11_OVERRIDE
, except that it throws if no override can be found.
-
PYBIND11_OVERRIDE_NAME(ret_type, cname, name, fn, ...)¶
Macro to populate the virtual method in the trampoline class. This macro tries to look up a method named ‘fn’ from the Python side, deals with the Global Interpreter Lock (GIL) and necessary argument conversions to call this method and return the appropriate type. See Overriding virtual functions in Python for more information. This macro should be used when the method name in C is not the same as the method name in Python. For example with
__str__
.std::string toString() override { PYBIND11_OVERRIDE_NAME( std::string, // Return type (ret_type) Animal, // Parent class (cname) "__str__", // Name of method in Python (name) toString, // Name of function in C++ (fn) ); }
-
PYBIND11_OVERRIDE_PURE_NAME(ret_type, cname, name, fn, ...)¶
Macro for pure virtual functions, this function is identical to
PYBIND11_OVERRIDE_NAME
, except that it throws if no override can be found.
-
template<class T>
function get_override(const T *this_ptr, const char *name)¶ Try to retrieve a python method by the provided name from the instance pointed to by the this_ptr.
- This_ptr
The pointer to the object the overridden method should be retrieved for. This should be the first non-trampoline class encountered in the inheritance chain.
- Name
The name of the overridden Python method to retrieve.
- Returns
The Python method by this name from the object or an empty function wrapper.
Exceptions¶
-
class error_already_set : public std::exception¶
Fetch and hold an error which was already set in Python. An instance of this is typically thrown to propagate python-side errors back through C++ which can either be caught manually or else falls back to the function dispatcher (which then raises the captured error back to python).
Public Functions
-
inline error_already_set()¶
Fetches the current Python exception (using PyErr_Fetch()), which will clear the current Python error indicator.
-
inline const char *what() const noexcept override¶
The what() result is built lazily on demand. WARNING: This member function needs to acquire the Python GIL. This can lead to crashes (undefined behavior) if the Python interpreter is finalizing.
-
inline void restore()¶
Restores the currently-held Python error (which will clear the Python error indicator first if already set). NOTE: This member function will always restore the normalized exception, which may or may not be the original Python exception. WARNING: The GIL must be held when this member function is called!
-
inline void discard_as_unraisable(object err_context)¶
If it is impossible to raise the currently-held error, such as in a destructor, we can write it out using Python’s unraisable hook (
sys.unraisablehook
). The error context should be some object whoserepr()
helps identify the location of the error. Python already knows the type and value of the error, so there is no need to repeat that.
-
inline void discard_as_unraisable(const char *err_context)¶
An alternate version of
discard_as_unraisable()
, where a string provides information on the location of the error. For example,__func__
could be helpful. WARNING: The GIL must be held when this member function is called!
-
inline error_already_set()¶
-
class builtin_exception : public std::runtime_error¶
C++ bindings of builtin Python exceptions.
Subclassed by attribute_error, buffer_error, cast_error, import_error, index_error, key_error, reference_cast_error, stop_iteration, type_error, value_error
Public Functions
-
virtual void set_error() const = 0¶
Set the error using the Python C API.
-
virtual void set_error() const = 0¶
Literals¶
-
namespace literals¶