Modular forms, modular symbols

 PARI-GP version 2.15.2)

 PARI-GP version 2.15.2)}
Modular Forms

Dirichlet characters

Characters are encoded in three different ways:

- a t_INT $D \equiv 0,1 \bmod 4$: the quadratic character (D / \cdot);
- a t_INTMOD $\operatorname{Mod}(m, q), m \in(\mathbf{Z} / q)^{*}$ using a canonical bijection with the dual group (the Conrey character $\chi_{q}(m, \cdot)$);
- a pair $[G, c h i]$, where $G=z n \operatorname{star}(q, 1)$ encodes $(\mathbf{Z} / q \mathbf{Z})^{*}=$ $\sum_{j \leq k}\left(\mathbf{Z} / d_{j} \mathbf{Z}\right) \cdot g_{j}$ and the vector $c h i=\left[c_{1}, \ldots, c_{k}\right]$ encodes the character such that $\chi\left(g_{j}\right)=e\left(c_{j} / d_{j}\right)$.
initialize $G=(\mathbf{Z} / q \mathbf{Z})^{*}$
convert datum D to $[G, \chi]$
Galois orbits of Dirichlet characters
G = znstar $(q, 1)$
znchar (D)
chargalois (G)
Spaces of modular forms
Arguments of the form $[N, k, \chi]$ give the level weight and nebentypus $\chi ; \chi$ can be omitted: $[N, k]$ means trivial χ.
initialize $S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)$
initialize $S_{k}^{k}\left(\Gamma_{0}(N), \chi\right)$
initialize $S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right)$
initialize $E_{k}\left(\Gamma_{0}(N), \chi\right)$
initialize $M_{k}\left(\Gamma_{0}(N), \chi\right)$
find eigenforms
statistics on self-growing caches
We let $M=\operatorname{mfinit}(.$.
describe the space M
recover (N, k, χ)
. . the space identifier (0 to 4)
the dimension of M over \mathbf{C}
. a C-basis $\left(f_{i}\right)$ of M
.. a basis $\left(F_{j}\right)$ of eigenforms
\ldots polynomials defining $\mathbf{Q}(\chi)\left(F_{j}\right) / \mathbf{Q}(\chi)$
matrix of Hecke operator T_{n} on $\left(f_{i}\right)$ eigenvalues of w_{Q}
basis of period poynomials for weight basis of period poynomials fo
basis of the Kohnen +-space
basis of the Kohnen + -space
. . new space and eigenforms
mfinit $([N, k, \chi], 0)$
mfinit $([N, k, \chi], 1)$
mfinit $([N, k, \chi], 2)$
mfinit $([N, k, \chi], 3)$
mfinit $([N, k, \chi])$
mfsplit(M)
getcache() mfkohneneigenbasis (M, b) somorphism $S_{k}^{+}(4 N, \chi) \rightarrow S_{2 k-1}\left(N, \chi^{2}\right)$ mfkohnenbijection (M)
Useful data can also be obtained a priori, without computing a complete modular space:
dimension of $S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)$
dimension of $S_{k}^{k}\left(\Gamma_{0}(N), \chi\right)$
dimension of $S_{k}^{\text {old }}\left(\Gamma_{0}(N), \chi\right)$
dimension of $M_{k}\left(\Gamma_{0}(N), \chi\right)$
dimension of $E_{k}\left(\Gamma_{0}(N), \chi\right)$
Sturm's bound for $M_{k}\left(\Gamma_{0}(N), \chi\right)$
$\Gamma_{0}(N)$ cosets
list of right $\Gamma_{0}(N)$ cosets
identify coset a matrix belongs to Cusps
a cusp is given by a rational number or oo. lists of cusps of $\Gamma_{0}(N)$
number of cusps of $\Gamma_{0}(N)$
width of cusp c of $\Gamma_{0}(N)$
is cusp c regular for $M_{k}\left(\Gamma_{0}(N), \chi\right)$? mfcuspiscuspwidh (N, c)

Create an individual modular form

Besides mfbasis and mfeigenbasis, an individual modular form can be identified by a few coefficients,
modular form from coefficients

There are also many predefined ones
Eisenstein series E_{k} on $\mathrm{Sl}_{2}(\mathbf{Z})$
Eisenstein-Hurwitz series on $\Gamma_{0}(4)$ unary θ function (for character ψ)
Ramanujan's Δ
$E_{k}(\chi)$
$E_{k}\left(\chi_{1}, \chi_{2}\right)$
eta quotient $\prod_{i} \eta\left(a_{i, 1} \cdot z\right)^{a_{i, 2}}$
newform attached to ell. curve E / \mathbf{Q}
identify an L-function as a eigenform
θ function attached to $Q>0$
trace form in $S_{k}^{\text {new }}\left(\Gamma_{0}(N), \chi\right)$
trace form in $S_{k}^{k}\left(\Gamma_{0}(N), \chi\right)$
mftobasis(mf,vec)
$\operatorname{mfEk}(k)$
$\operatorname{mfEH}(k)$
$\operatorname{mfTheta}(\{\psi\})$
mfDelta()
mfeisenstein (k, χ)
mfeisenstein $\left(k, \chi_{1}, \chi_{2}\right)$
mffrometaquo (a)
mffromell (E)
mffromlfun (L)
mffromqf (Q)
mftraceform($[N, k, \chi])$
mftraceform $([N, k, \chi], 1)$
Operations on modular forms
In this section, f, g and the $F[i]$ are modular forms
$f \times g \quad \operatorname{mfmul}(f, g)$
$f / g \quad \operatorname{mfdiv}(f, g)$
$\operatorname{mfpow}(f, n)$
$\sum_{f=g ?}^{i \leq k} \lambda_{i} F[i], L=\left[\lambda_{1}, \ldots, \lambda_{k}\right]$
$f=g$?
expanding operator $B_{d}(f)$
Hecke operator $T_{n} f$
initialize Atkin-Lehner operator w_{Q} . apply w_{Q} to f
twist by the quadratic char (D / \cdot)
derivative wrt. $q \cdot d / d q$
see f over an absolute field
Serre derivative $\left(q \cdot \frac{d}{d q}-\frac{k}{12} E_{2}\right) f$
Rankin-Cohen bracket $[f, g]_{n}$
Shimura lift of f for discriminant D
$\operatorname{mfpow}(f, n)$
mflinear (F, L)
mfisequal (f,g)
$\operatorname{mfbd}(f, d)$
mfhecke $(m f, f, n)$
mfatkininit $(m f, Q)$
$\operatorname{mfatkin}\left(w_{Q}, f\right)$
$\operatorname{mftwist}(f, D)$
mfderiv (f)
mfreltoabs (f)
mfderivE2 (f)
mfbracket (f, g, n)
mfshimura($m f, f, D$)
Properties of modular forms
In this section, $f=\sum_{n} f_{n} q^{n}$ is a modular form in some space M with parameters N, k, χ
describe the form f
(N, k, χ) for form f
the space identifier (0 to 4) for f $\left[f_{0}, \ldots, f_{n}\right]$
is f a CM form?
is f an eta quotient?
Galois rep. attached to all $(1, \chi)$ eigenforms
Galois rep. attached to all $(1, \chi)$ eigenforms mfgaloistype (M) .single eigenform
as a polynomial fixed by Ker ρ_{F} decompose f on mfbasis (M)
smallest level on which f is defined decompose f on $\oplus S_{k}^{\text {new }}\left(\Gamma_{0}(d)\right), d \mid N$ valuation of f at cusp c expansion at ∞ of $\left.f\right|_{k} \gamma$
n-Taylor expansion of f at i
all rational eigenforms matching criteria
forms matching criteria
mfdescribe(f)
mfparams (f)
$\operatorname{mfspace}(m f, f)$
mfcoefs (f, n)
$\operatorname{mfcoef}(f, n)$
mfiscm (f) mfgaloisprojrep (M, F)
mftobasis (M, f)
mfconductor (M, f) mftonew (M, f) mfcuspval (M, f, c)
mfslashexpansion(M, f, γ, n) mftaylor (f, n) mfeigensearch mfsearch

Forms embedded into C
Given a modular form f in $M_{k}\left(\Gamma_{0}(N), \chi\right)$ its field of definition $Q(f)$ has $n=[Q(f): Q(\chi)]$ embeddings into the complex numbers. If $n=1$, the following functions return a single answer, attached to the canonical embedding of f in $\mathbf{C}[[q]]$; else a vector of n results, corresponding to the n conjugates of f.
complex embeddings of $Q(f) \quad \operatorname{mfembed}(f)$
\ldots embed coets of $f \quad \operatorname{mfembed}(f, v)$
evaluate f at $\tau \in \mathcal{H}$
L-function attached to $f \quad \operatorname{lfunmf}(m f, f)$
. eigenforms of new space $M \quad$ lfunmf (M)

Periods and symbols

The functions in this section depend on $[Q(f): Q(\chi)]$ as above. initialize symbol $f s$ attached to $f \quad \operatorname{mfsymbol}(M, f)$ evaluate symbol $f s$ on path $p \quad$ mfsymboleval $(f s, p)$
Petersson product of f and g
period polynomial of form f
period polynomials for eigensymbol $F S$

Modular Symbols

Let $G=\Gamma_{0}(N), V_{k}=\mathbf{Q}[X, Y]_{k-2}, L_{k}=\mathbf{Z}[X, Y]_{k-2}$ and $\Delta=$ $\operatorname{Div}^{0}\left(\mathbf{P}^{1}(\mathbf{Q})\right)$. An element of Δ is a path between cusps of $X_{0}(N)$ via the identification $[b]-[a] \rightarrow$ path from a to b, coded by the pair $[a, b]$ where a, b are rationals or $\circ \circ=(1: 0)$.

Let $\mathbf{M}_{k}(G)=\operatorname{Hom}_{G}\left(\Delta, V_{k}\right) \simeq H_{c}^{1}\left(X_{0}(N), V_{k}\right)$; an element of $\mathbf{M}_{k}(G)$ is a V_{k}-valued modular symbol. There is a natural decomposition $\mathbf{M}_{k}(G)=\mathbf{M}_{k}(G)^{+} \oplus \mathbf{M}_{k}(G)^{-}$under the action of the * involution, induced by complex conjugation. The msinit function computes either $\mathbf{M}_{k}(\varepsilon=0)$ or its \pm-parts $(\varepsilon= \pm 1)$ and fixes a minimal set of $\mathbf{Z}[G]$-generators $\left(g_{i}\right)$ of Δ.
initialize $M=\mathbf{M}_{k}\left(\Gamma_{0}(N)\right)^{\varepsilon}$
initinel $\quad \operatorname{msinit}(N, k,\{\varepsilon=$
the level $M \quad$ msgetlevel (M)
the weight k
the $\operatorname{sign} \varepsilon$
Farey symbol attached to G
\ldots attached to $H<G$
$H \backslash G$ and right G-action
$\mathbf{Z}[G]$-generators $\left(g_{i}\right)$ and relations for Δ
decompose $p=[a, b]$ on the $\left(g_{i}\right)$

Create a symbol

Eisenstein symbol attached to cusp c
cuspidal symbol attached to E / \mathbf{Q} symbol having given Hecke eigenvalues is s a symbol?
msgetweight(M)
msgetsign (M)
mspolygon(M)
msfarey $(F, i n H)$
mscosets $(\operatorname{gen} G, i n H)$
mspathgens (M)
mspathlog (M, p)
msfromcusp(M, c)
msfromell(E)
fromhecke $(M, v,\{H\})$
Operations on symbols
the list of all $s\left(g_{i}\right)$
evaluate symbol s on path $p=[a, b]$
Petersson product of s and t
Operators on subspaces
An operator is given by a matrix of a fixed \mathbf{Q}-basis. H, if given, is a stable \mathbf{Q}-subspace of $\mathbf{M}_{k}(G)$: operator is restricted to H. matrix of Hecke operator T_{p} or U_{p} matrix of Atkin-Lehner w_{Q} matrix of the $*$ involution
mshecke $(M, p,\{H\})$
msatkinlehner $(M, Q\{H\}$
$\operatorname{msstar}(M,\{H\})$

Subspaces

A subspace is given by a structure allowing quick projection and restriction of linear operators. Its fist component is a matrix with integer coefficients whose columns for a \mathbf{Q}-basis. If H is a Heckestable subspace of $M_{k}(G)^{+}$or $M_{k}(G)^{-}$, it can be split into a direct sum of Hecke-simple subspaces. To a simple subspace corresponds a single normalized newform $\sum_{n} a_{n} q^{n}$.
cuspidal subspace $S_{k}(G)^{\varepsilon}$
Eisenstein subspace $E_{k}(G)^{\varepsilon} \quad$ mscuspidal (M)
new part of $S_{k}(G)^{\varepsilon}$
mseisenstein (M)
msnew (M)
split H into simple subspaces $(\operatorname{of~dim} \leq d) \quad \operatorname{mssplit}(M, H,\{d\})$
dimension of a subspace $\quad \operatorname{msdim}(M)$
$\left(a_{1}, \ldots, a_{B}\right)$ for attached newform msqexpansion $(M, H,\{B\})$ Z-structure from $H^{1}\left(G, L_{k}\right)$ on subspace A mslattice (M, A)

Overconvergent symbols and p-adic L functions

Let M be a full modular symbol space given by msinit and p be a prime. To a classical modular symbol ϕ of level $N\left(v_{p}(N) \leq 1\right)$, which is an eigenvector for T_{p} with nonzero eigenvalue a_{p}, we can attach a p-adic L-function L_{p}. The function L_{p} is defined on continuous characters of $\operatorname{Gal}\left(\mathbf{Q}\left(\mu_{p} \infty\right) / \mathbf{Q}\right)$; in GP we allow characters $\langle\chi\rangle^{s_{1}} \tau^{s_{2}}$, where $\left(s_{1}, s_{2}\right)$ are integers, τ is the Teichmüller character and χ is the cyclotomic character.
The symbol ϕ can be lifted to an overconvergent symbol Φ, taking values in spaces of p-adic distributions (represented in GP by a list of moments modulo p^{n}).
mspadicinit precomputes data used to lift symbols. If flag is given, it speeds up the computation by assuming that $v_{p}\left(a_{p}\right)=0$ if flag $=0$ (fastest), and that $v_{p}\left(a_{p}\right) \geq$ flag otherwise (faster as flag increases).
mspadicmoments computes distributions $m u$ attached to Φ allowing to compute $L p$ to high accuracy
nitialize $M p$ to lift symbol
mspadicinit($M, p, n,\{f l a g\})$ lift symbol $\phi \quad$ mstooms $(M p, \phi)$
$\begin{array}{ll}\text { lift symbol } \phi & \operatorname{mstooms}(M p, \phi) \\ \text { eval overconvergent symbol } \Phi \text { on path } p & \operatorname{msomseval}(M p, \Phi, p)\end{array}$ $m u$ for p-adic L-functions mspadicmoments $(M p, S,\{D=1\})$ $L_{p}^{(r)}\left(\chi^{s}\right), s=\left[s_{1}, s_{2}\right]$ mspadicL($m u,\{s=0\},\{r=0\}$) $\hat{L}_{p}\left(\tau^{i}\right)(x)$ mspadicseries $(m u,\{i=0\})$

